Publications by authors named "De'an Yang"

Electrosynthesis of hydrogen peroxide (HO) via two-electron oxygen reduction reaction (2e ORR) is a promising alternative to the anthraquinone oxidation process. To improve the overall energy efficiency and economic viability of this catalytic process, one pathway is to develop advanced catalysts to decrease the overpotential at the cathode, and the other is to couple 2e ORR with certain anodic reactions to decrease the full cell voltage while producing valuable chemicals on both electrodes. The catalytic performance of a 2e ORR catalyst depends not only on the material itself but also on the environmental factors.

View Article and Find Full Text PDF

Electrocatalytic hydrogen peroxide (HO) production via two-electron oxygen reduction reaction (2e-ORR) features energy-saving and eco-friendly characteristics, making it a promising alternative to the anthraquinone oxidation process. However, the common existence of numerous 2e-ORR-inactive sites/species on electrocatalysts tends to catalyze side reactions, especially under low potentials, which compromises energy efficiency and limits HO yield. Addressing this, a high surface density of mono-species pyrrolic nitrogen configurations is formed over a polypyrrole@carbon nanotube composite.

View Article and Find Full Text PDF

The high-volume resistivity and surface resistance of poly(ether ether ketone)/multiwalled carbon nanotubes (PEEK/MWCNT) composites restrict their use in an electronic field. To decrease the volume resistivity and surface resistance, we metalized the composites by electroless plating. The composites and metal coatings were characterized by SEM, XPS, AFM, EDX, and XRD spectroscopy.

View Article and Find Full Text PDF

Poly (propylene fumarate)/(Calcium sulfate/β-tricalcium phosphate) (PPF/(CaSO(4)/β-TCP)) is a kind of biodegradable composite designed for bone tissue engineering. The in vitro degradation behavior of this composite has been investigated in our previous study. The aim of this study was to investigate the effects of PPF molecular weight and CaSO(4)/β-TCP molar ratio on the in vivo degradation of PPF/(CaSO(4)/β-TCP) composite and the bone tissue response to PPF/(CaSO(4)/β-TCP).

View Article and Find Full Text PDF

This study aimed to prepare a poly(propylene fumarate)/(calcium sulphate/beta-tricalcium phosphate) (PPF/(CaSO(4)/beta-TCP)) composite. We first examined the effects of varying the molecular weight of PPF and the N-vinyl pyrrolidinone (NVP) to PPF ratio on the maximum cross-linking temperature and the composite compressive strength and modulus. Then the in vitro biodegradation behaviour of PPF/(CaSO(4)/beta-TCP) composites was investigated.

View Article and Find Full Text PDF

Poly (propylene fumarate) is an unsaturated linear polyester, which degrades, in the presence of water, into propylene glycol and fumaric acid, and the degradation products can be cleared from the human body by normal metabolic processes. In this paper, different methods of the synthesis of PPF are listed, the crosslinking characteristics of polymerizing composite as well as the mechanical properties of cross-linked composite are discussed, and the potentialities of PPF composite used as particularly degradable polymeric cement for orthopedic application are reviewed.

View Article and Find Full Text PDF