Unlabelled: Myeloid phagocytes are essential for antifungal immunity against pulmonary and systemic infections. However, the molecular mechanisms underlying fungal clearance by phagocytes remain incompletely understood. In this study, we investigated the role of Perforin-2 () in antifungal immunity.
View Article and Find Full Text PDFSkin uses interdependent cellular networks for barrier integrity and host immunity, but most underlying mechanisms remain obscure. Herein, we demonstrate that the human parasitic helminth Schistosoma mansoni inhibited pruritus evoked by itch-sensing afferents bearing the Mas-related G-protein-coupled receptor A3 (MrgprA3) in mice. MrgprA3 neurons controlled interleukin (IL)-17 γδ T cell expansion, epidermal hyperplasia and host resistance against S.
View Article and Find Full Text PDFCo-evolutionary adaptation of hookworms with their mammalian hosts has been selected for immunoregulatory excretory/secretory (E/S) products. However, it is not known whether, or if so, how host immunological status impacts the secreted profile of hematophagous adult worms. This study interrogated the impact of host Signal transducer and activator of transcription 6 (STAT6) expression during the experimental evolution of hookworms through the sequential passage of the life cycle in either STAT6 deficient or WT C57BL/6 mice.
View Article and Find Full Text PDFHost defense at the mucosal interface requires collaborative interactions between diverse cell lineages. Epithelial cells damaged by microbial invaders release reparative proteins such as the Trefoil factor family (TFF) peptides that functionally restore barrier integrity. However, whether TFF peptides and their receptors also serve instructive roles for immune cell function during infection is incompletely understood.
View Article and Find Full Text PDFThe impact of the host immune environment on parasite transcription and fitness is currently unknown. It is widely held that hookworm infections have an immunomodulatory impact on the host, but whether the converse is true remains unclear. Immunity against adult-stage hookworms is largely mediated by Type 2 immune responses driven by the transcription factor Signal Transducer and Activator of Transcription 6 (STAT6).
View Article and Find Full Text PDFSkin employs interdependent cellular networks to facilitate barrier integrity and host immunity through ill-defined mechanisms. This study demonstrates that manipulation of itch-sensing neurons bearing the Mas-related G protein-coupled receptor A3 (MrgprA3) drives IL-17+ γδ T cell expansion, epidermal thickening, and resistance to the human pathogen through mechanisms that require myeloid antigen presenting cells (APC). Activated MrgprA3 neurons instruct myeloid APCs to downregulate interleukin 33 (IL-33) and up-regulate TNFα partially through the neuropeptide calcitonin gene related peptide (CGRP).
View Article and Find Full Text PDFThe authors have withdrawn this manuscript owing to inaccuracies in the calculation of tuft cell numbers and errors in the selection of immunofluorescence images used to support our claims. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author.
View Article and Find Full Text PDFThe gastrointestinal (GI) nematode Strongyloides stercoralis (S.s.) causes human strongyloidiasis, a potentially life-threatening disease that currently affects over 600 million people globally.
View Article and Find Full Text PDFSchistosomiasis is a devastating disease caused by parasitic flatworms of the genus Schistosoma. Praziquantel (PZQ), the current treatment of choice, is ineffective against immature worms and cannot prevent reinfection. The continued reliance on a single drug for treatment increases the risk of the development of PZQ-resistant parasites.
View Article and Find Full Text PDFAntigen encounter directs CD4 T cells to differentiate into T helper or regulatory cells. This process focuses the immune response on the invading pathogen and limits tissue damage. Mechanisms that govern T helper cell versus T regulatory cell fate remain poorly understood.
View Article and Find Full Text PDFHelminths are remarkably successful parasites that can invade various mammalian hosts and establish chronic infections that can go unnoticed for years despite causing severe tissue damage. To complete their life cycles, helminths migrate through multiple barrier sites that are densely populated by a complex array of hematopoietic and non-hematopoietic cells. While it is clear that type 2 cytokine responses elicited by immune cells promote worm clearance and tissue healing, the actions of non-hematopoietic cells are increasingly recognized as initiators, effectors and regulators of anti-helminth immunity.
View Article and Find Full Text PDFSchistosomiasis is a potentially lethal parasitic disease that profoundly impacts systemic immune function in chronically infected hosts through mechanisms that remain unknown. Given the immunoregulatory dysregulation experienced in infected individuals, this study examined the impact of chronic schistosomiasis on the sustainability of vaccine-induced immunity in both children living in endemic areas and experimental infections in mice. Data show that chronic Schistosoma mansoni infection impaired the persistence of vaccine specific antibody responses in poliovirus-vaccinated humans and mice.
View Article and Find Full Text PDFSchistosomiasis is a neglected tropical disease caused by parasitic flatworms of the genus Schistosoma. Mono-therapeutic treatment of this disease with the drug praziquantel, presents challenges such as inactivity against immature worms and inability to prevent reinfection. Importantly, ion channels are important targets for many current anthelmintics.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
March 2022
Tissue damage in the upper and lower airways caused by mechanical abrasion, noxious chemicals, or pathogenic organisms must be followed by rapid restorative processes; otherwise, persistent immunopathology and disease may ensue. This review will discuss evidence for the important role served by trefoil factor (TFF) family members in healthy and diseased airways of humans and rodents. Collectively, these peptides serve to both maintain and restore homeostasis through their regulation of the mucous layer and their control of cell motility, cell differentiation, and immune function in the upper and lower airways.
View Article and Find Full Text PDFHelminth infections, including hookworms and Schistosomes, can cause severe disability and death. Infection management and control would benefit from identification of biomarkers for early detection and prognosis. While animal models suggest that Trefoil Factor Family proteins (TFF2 and TFF3) and interleukin-33 (IL-33) -driven type 2 immune responses are critical mediators of tissue repair and worm clearance in the context of hookworm infection, very little is known about how they are modulated in the context of human helminth infection.
View Article and Find Full Text PDFObjective: The risks of excess sugar intake in addition to high-fat diet consumption on immunopathogenesis of obesity-associated metabolic diseases are poorly defined. Interleukin-4 (IL-4) and IL-13 signaling via IL-4Rα regulates adipose tissue lipolysis, insulin sensitivity, and liver fibrosis in obesity. However, the contribution of IL-4Rα to sugar rich diet-driven obesity and metabolic sequelae remains unknown.
View Article and Find Full Text PDFHelminths are distinct from microbial pathogens in both size and complexity, and are the likely evolutionary driving force for type 2 immunity. CD4+ helper T cells can both coordinate worm clearance and prevent immunopathology, but issues of T cell antigen specificity in the context of helminth-induced Th2 and T regulatory cell (Treg) responses have not been addressed. Herein, we generated a novel transgenic line of the gastrointestinal nematode Strongyloides ratti expressing the immunodominant CD4+ T cell epitope 2W1S as a fusion protein with green fluorescent protein (GFP) and FLAG peptide in order to track and study helminth-specific CD4+ T cells.
View Article and Find Full Text PDFRecovery of damaged mucosal surfaces following inflammatory insult requires diverse regenerative mechanisms that remain poorly defined. Previously, we demonstrated that the reparative actions of Trefoil Factor 3 (TFF3) depend upon the enigmatic receptor, leucine rich repeat and immunoglobulin-like domain containing nogo receptor 2 (LINGO2). This study examined the related orphan receptor LINGO3 in the context of intestinal tissue damage to determine whether LINGO family members are generally important for mucosal wound healing and maintenance of the intestinal stem cell (ISC) compartment needed for turnover of mucosal epithelium.
View Article and Find Full Text PDFCommunication between the nervous and immune systems serves a key role in host-protective immunity at mucosal barrier sites including the respiratory tract. In these tissues, neuroimmune interactions operate in bidirectional circuits that can sense and respond to mechanical, chemical, and biologic stimuli. Allergen- or helminth-induced products can produce airway inflammation by direct action on nociceptive afferents and adjacent tissues.
View Article and Find Full Text PDFCoevolutionary adaptation between humans and helminths has developed a finely tuned balance between host immunity and chronic parasitism due to immunoregulation. Given that these reciprocal forces drive selection, experimental models of helminth infection are ideally suited for discovering how host protective immune responses adapt to the unique tissue niches inhabited by these large metazoan parasites. This review highlights the key discoveries in the immunology of helminth infection made over the last decade, from innate lymphoid cells to the emerging importance of neuroimmune connections.
View Article and Find Full Text PDFIL-33 is an IL-1 family cytokine that signals through its cognate receptor, ST2, to regulate inflammation. Whether IL-33 serves a pathogenic or protective role during inflammatory bowel disease is controversial. Herein, two different strains of cell-specific conditionally deficient mice were used to compare the role of myeloid- versus intestinal epithelial cell-derived IL-33 during dextran sodium sulfate-induced colitis.
View Article and Find Full Text PDFInterleukin-33 (IL-33) is a pleiotropic cytokine that can promote type 2 inflammation but also drives immunoregulation through Foxp3T expansion. How IL-33 is exported from cells to serve this dual role in immunosuppression and inflammation remains unclear. Here, we demonstrate that the biological consequences of IL-33 activity are dictated by its cellular source.
View Article and Find Full Text PDFAnn Allergy Asthma Immunol
February 2021
Objective: To review the latest discoveries regarding the role of tuft cells in the pathogenesis of chronic rhinosinusitis (CRS) with nasal polyposis and asthma.
Data Sources: Reviews and primary research manuscripts were identified from PubMed, Google, and bioRxiv using the search words airway epithelium, nasal polyposis, CRS or asthma and chemoreceptor cell, solitary chemosensory cell, brush cell, microvillus cell, and tuft cell.
Study Selections: Studies were selected on the basis of novelty and likely relevance to the functions of tuft cells in chronic inflammatory diseases in the upper and lower airways.