trying...
8 1 0 1 MCID_676f085dcd62a98c9f0bab67
38927412
Dazhuang Lu[author] Lu, Dazhuang[Full Author Name] lu, dazhuang[Author]
trying2... trying...
38927412 2024 06 29 2227-9059 12 6 2024 May 29 Biomedicines Biomedicines M2 Macrophages Guide Periosteal Stromal Cell Recruitment and Initiate Bone Injury Regeneration. 1205 10.3390/biomedicines12061205 The periosteum plays a critical role in bone repair and is significantly influenced by the surrounding immune microenvironment. In this study, we employed 10× single-cell RNA sequencing to create a detailed cellular atlas of the swine cranial periosteum, highlighting the cellular dynamics and interactions essential for cranial bone injury repair. We noted that such injuries lead to an increase in M2 macrophages, which are key in modulating the periosteum's immune response and driving the bone regeneration process. These macrophages actively recruit periosteal stromal cells (PSCs) by secreting Neuregulin 1 (NRG1), a crucial factor in initiating bone regeneration. This recruitment process emphasizes the critical role of PSCs in effective bone repair, positioning them as primary targets for therapeutic interventions. Our results indicate that enhancing the interaction between M2 macrophages and PSCs could significantly improve the outcomes of treatments aimed at cranial bone repair and regeneration. Lu Dazhuang D 0000-0001-5681-5282 Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China. Zhang Yingfei Y Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China. Liang Shimin S Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China. Li Yang Y Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China. Qing Jia J Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China. Gu Lanxin L 0000-0003-1094-2205 Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China. Xu Xiuyun X Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China. Wang Zeying Z 0000-0003-1606-9937 Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China. Gao Xin X Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China. Liu Hao H Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China. Zhang Xiao X Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China. Zhou Yongsheng Y 0000-0002-4332-0878 Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China. Zhang Ping P 0000-0001-8651-2100 Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China. eng 81930026 National Natural Science Foundation of China Journal Article 2024 05 29 Switzerland Biomedicines 101691304 2227-9059 Neuregulin 1 (NRG1) craniofacial injury macrophages (MØs) mesenchymal stromal cells (MSCs) periosteal stromal cells (PSCs) single-cell sequencing The authors declare no conflicts of interest. 2024 4 18 2024 5 26 2024 5 27 2024 6 27 6 44 2024 6 27 6 43 2024 6 27 1 2 2024 5 29 epublish 38927412 PMC11200943 10.3390/biomedicines12061205 biomedicines12061205 Oliver J.D., Madhoun W., Graham E.M., Hendrycks R., Renouard M., Hu M.S. Stem Cells Regenerating the Craniofacial Skeleton: Current State-of-the-Art and Future Directions. J. Clin. Med. 2020;9:3307. doi: 10.3390/jcm9103307. 10.3390/jcm9103307 PMC7602501 33076266 Worthley D.L., Churchill M., Compton J.T., Tailor Y., Rao M., Si Y., Levin D., Schwartz M.G., Uygur A., Hayakawa Y., et al. Gremlin 1 Identifies a Skeletal Stem Cell with Bone, Cartilage, and Reticular Stromal Potential. Cell. 2015;160:269–284. doi: 10.1016/j.cell.2014.11.042. 10.1016/j.cell.2014.11.042 PMC4436082 25594183 Zhou B.O., Yue R., Murphy M.M., Peyer J.G., Morrison S.J. Leptin-Receptor-Expressing Mesenchymal Stromal Cells Represent the Main Source of Bone Formed by Adult Bone Marrow. Cell Stem Cell. 2014;15:154–168. doi: 10.1016/j.stem.2014.06.008. 10.1016/j.stem.2014.06.008 PMC4127103 24953181 Mendez-Ferrer S., Michurina T.V., Ferraro F., Mazloom A.R., Macarthur B.D., Lira S.A., Scadden D.T., Ma A., Enikolopov G.N., Frenette P.S. Mesenchymal and Haematopoietic Stem Cells Form a Unique Bone Marrow Niche. Nature. 2010;466:829–834. doi: 10.1038/nature09262. 10.1038/nature09262 PMC3146551 20703299 Newton P.T., Li L., Zhou B., Schweingruber C., Hovorakova M., Xie M., Sun X., Sandhow L., Artemov A.V., Ivashkin E., et al. A Radical Switch in Clonality Reveals a Stem Cell Niche in the Epiphyseal Growth Plate. Nature. 2019;567:234–238. doi: 10.1038/s41586-019-0989-6. 10.1038/s41586-019-0989-6 30814736 Jee W. Bone Mechanics Handbook. CRC Press; Boca Raton, FL, USA: 2001. Integrated Bone Tissue Physiology: Anatomy and Physiology; pp. 1.1–1.68. Shen F., Huang X., He G., Shi Y. The Emerging Studies on Mesenchymal Progenitors in the Long Bone. Cell Biosci. 2023;13:105. doi: 10.1186/s13578-023-01039-x. 10.1186/s13578-023-01039-x PMC10257854 37301964 Akiyama H., Kim J.E., Nakashima K., Balmes G., Iwai N., Deng J.M., Zhang Z., Martin J.F., Behringer R.R., Nakamura T., et al. Osteo-Chondroprogenitor Cells Are Derived from Sox9 Expressing Precursors. Proc. Natl. Acad. Sci. USA. 2005;102:14665–14670. doi: 10.1073/pnas.0504750102. 10.1073/pnas.0504750102 PMC1239942 16203988 Shah H.N., Jones R.E., Borrelli M.R., Robertson K., Salhotra A., Wan D.C., Longaker M.T. Craniofacial and Long Bone Development in the Context of Distraction Osteogenesis. Plast. Reconstr. Surg. 2021;147:54e–65e. doi: 10.1097/PRS.0000000000007451. 10.1097/PRS.0000000000007451 PMC7773036 33370054 Debnath S., Yallowitz A.R., McCormick J., Lalani S., Zhang T., Xu R., Li N., Liu Y., Yang Y.S., Eiseman M., et al. Discovery of a Periosteal Stem Cell Mediating Intramembranous Bone Formation. Nature. 2018;562:133–139. doi: 10.1038/s41586-018-0554-8. 10.1038/s41586-018-0554-8 PMC6193396 30250253 Perrin S., Colnot C. Periosteal Skeletal Stem and Progenitor Cells in Bone Regeneration. Curr. Osteoporos. Rep. 2022;20:334–343. doi: 10.1007/s11914-022-00737-8. 10.1007/s11914-022-00737-8 35829950 Colnot C., Lu C., Hu D., Helms J.A. Distinguishing the Contributions of the Perichondrium, Cartilage, and Vascular Endothelium to Skeletal Development. Dev. Biol. 2004;269:55–69. doi: 10.1016/j.ydbio.2004.01.011. 10.1016/j.ydbio.2004.01.011 15081357 Rana R.S., Wu J.S., Eisenberg R.L. Periosteal Reaction. AJR Am. J. Roentgenol. 2009;193:W259–W272. doi: 10.2214/AJR.09.3300. 10.2214/AJR.09.3300 19770293 Yiannakopoulos C.K., Kanellopoulos A.D., Trovas G.P., Dontas I.A., Lyritis G.P. The Biomechanical Capacity of the Periosteum in Intact Long Bones. Arch. Orthop. Trauma Surg. 2008;128:117–120. doi: 10.1007/s00402-007-0433-5. 10.1007/s00402-007-0433-5 17874324 Lin Z., Fateh A., Salem D.M., Intini G. Periosteum: Biology and Applications in Craniofacial Bone Regeneration. J. Dent. Res. 2014;93:109–116. doi: 10.1177/0022034513506445. 10.1177/0022034513506445 PMC3895334 24088412 Colnot C., Zhang X., Tate M.L.K. Current Insights on the Regenerative Potential of the Periosteum: Molecular, Cellular, and Endogenous Engineering Approaches. J. Orthop. Res. 2012;30:1869–1878. doi: 10.1002/jor.22181. 10.1002/jor.22181 PMC4620732 22778049 Dimitriou R., Jones E., McGonagle D., Giannoudis P.V. Bone Regeneration: Current Concepts and Future Directions. BMC Med. 2011;9:66. doi: 10.1186/1741-7015-9-66. 10.1186/1741-7015-9-66 PMC3123714 21627784 Colnot C. Skeletal Cell Fate Decisions within Periosteum and Bone Marrow during Bone Regeneration. J. Bone Miner. Res. 2009;24:274–282. doi: 10.1359/jbmr.081003. 10.1359/jbmr.081003 PMC3276357 18847330 Thompson Z., Miclau T., Hu D., Helms J.A. A Model for Intramembranous Ossification during Fracture Healing. J. Orthop. Res. 2002;20:1091–1098. doi: 10.1016/S0736-0266(02)00017-7. 10.1016/S0736-0266(02)00017-7 12382977 Colnot C., Thompson Z., Miclau T., Werb Z., Helms J.A. Altered Fracture Repair in the Absence of Mmp9. Development. 2003;130:4123–4133. doi: 10.1242/dev.00559. 10.1242/dev.00559 PMC2778064 12874132 Ortinau L.C., Wang H., Lei K., Deveza L., Jeong Y., Hara Y., Grafe I., Rosenfeld S.B., Lee D., Lee B., et al. Identification of Functionally Distinct Mx1+Alphasma+ Periosteal Skeletal Stem Cells. Cell Stem Cell. 2019;25:784–796.e5. doi: 10.1016/j.stem.2019.11.003. 10.1016/j.stem.2019.11.003 PMC7055207 31809737 Xu J., Wang Y., Li Z., Tian Y., Li Z., Lu A., Hsu C.Y., Negri S., Tang C., Tower R.J., et al. Pdgfralpha Reporter Activity Identifies Periosteal Progenitor Cells Critical for Bone Formation and Fracture Repair. Bone Res. 2022;10:7. doi: 10.1038/s41413-021-00176-8. 10.1038/s41413-021-00176-8 PMC8786977 35075130 Matthews B.G., Novak S., Sbrana F.V., Funnell J.L., Cao Y., Buckels E.J., Grcevic D., Kalajzic I. Heterogeneity of Murine Periosteum Progenitors Involved in Fracture Healing. eLife. 2021;10:e58534. doi: 10.7554/eLife.58534. 10.7554/eLife.58534 PMC7906599 33560227 Tournaire G., Stegen S., Giacomini G., Stockmans I., Moermans K., Carmeliet G., van Gastel N. Nestin-Gfp Transgene Labels Skeletal Progenitors in the Periosteum. Bone. 2020;133:115259. doi: 10.1016/j.bone.2020.115259. 10.1016/j.bone.2020.115259 32036051 Shi Y., He G., Lee W.C., McKenzie J.A., Silva M.J., Long F. Gli1 Identifies Osteogenic Progenitors for Bone Formation and Fracture Repair. Nat. Commun. 2017;8:2043. doi: 10.1038/s41467-017-02171-2. 10.1038/s41467-017-02171-2 PMC5725597 29230039 Ransom R.C., Hunter D.J., Hyman S., Singh G., Ransom S.C., Shen E.Z., Perez K.C., Gillette M., Li J., Liu B., et al. Axin2-Expressing Cells Execute Regeneration after Skeletal Injury. Sci. Rep. 2016;6:36524. doi: 10.1038/srep36524. 10.1038/srep36524 PMC5113299 27853243 Bok S., Yallowitz A.R., Sun J., McCormick J., Cung M., Hu L., Lalani S., Li Z., Sosa B.R., Baumgartner T., et al. A Multi-Stem Cell Basis for Craniosynostosis and Calvarial Mineralization. Nature. 2023;621:804–812. doi: 10.1038/s41586-023-06526-2. 10.1038/s41586-023-06526-2 PMC10799660 37730988 Zhang P., Dong J., Fan X., Yong J., Yang M., Liu Y., Zhang X., Lv L., Wen L., Qiao J., et al. Characterization of Mesenchymal Stem Cells in Human Fetal Bone Marrow by Single-Cell Transcriptomic and Functional Analysis. Signal Transduct. Target Ther. 2023;8:126. doi: 10.1038/s41392-023-01338-2. 10.1038/s41392-023-01338-2 PMC10063684 36997513 Houlihan D.D., Mabuchi Y., Morikawa S., Niibe K., Araki D., Suzuki S., Okano H., Matsuzaki Y. Isolation of Mouse Mesenchymal Stem Cells on the Basis of Expression of Sca-1 and Pdgfr-Alpha. Nat. Protoc. 2012;7:2103–2111. doi: 10.1038/nprot.2012.125. 10.1038/nprot.2012.125 23154782 Lin W., Li Q., Zhang D., Zhang X., Qi X., Wang Q., Chen Y., Liu C., Li H., Zhang S., et al. Mapping the Immune Microenvironment for Mandibular Alveolar Bone Homeostasis at Single-Cell Resolution. Bone Res. 2021;9:17. doi: 10.1038/s41413-021-00141-5. 10.1038/s41413-021-00141-5 PMC7960742 33723232 Jin S., Guerrero-Juarez C.F., Zhang L., Chang I., Ramos R., Kuan C.H., Myung P., Plikus M.V., Nie Q. Inference and Analysis of Cell-Cell Communication Using Cellchat. Nat. Commun. 2021;12:1088. doi: 10.1038/s41467-021-21246-9. 10.1038/s41467-021-21246-9 PMC7889871 33597522 Ishida K., Nagatake T., Saika A., Kawai S., Node E., Hosomi K., Kunisawa J. Induction of Unique Macrophage Subset by Simultaneous Stimulation with Lps and Il-4. Front. Immunol. 2023;14:1111729. doi: 10.3389/fimmu.2023.1111729. 10.3389/fimmu.2023.1111729 PMC10167635 37180123 Rios F.J., Touyz R.M., Montezano A.C. Isolation and Differentiation of Human Macrophages. Methods Mol. Biol. 2017;1527:311–320. 28116726 Ferretti C., Mattioli-Belmonte M. Periosteum Derived Stem Cells for Regenerative Medicine Proposals: Boosting Current Knowledge. World J. Stem Cells. 2014;6:266–277. doi: 10.4252/wjsc.v6.i3.266. 10.4252/wjsc.v6.i3.266 PMC4131269 25126377 Duchamp de Lageneste O., Julien A., Abou-Khalil R., Frangi G., Carvalho C., Cagnard N., Cordier C., Conway S.J., Colnot C. Periosteum Contains Skeletal Stem Cells with High Bone Regenerative Potential Controlled by Periostin. Nat. Commun. 2018;9:773. doi: 10.1038/s41467-018-03124-z. 10.1038/s41467-018-03124-z PMC5823889 29472541 Matthews B.G., Grcevic D., Wang L., Hagiwara Y., Roguljic H., Joshi P., Shin D.G., Adams D.J., Kalajzic I. Analysis of Alphasma-Labeled Progenitor Cell Commitment Identifies Notch Signaling as an Important Pathway in Fracture Healing. J. Bone Miner. Res. 2014;29:1283–1294. doi: 10.1002/jbmr.2140. 10.1002/jbmr.2140 PMC4864015 24190076 Dimitriou R., Tsiridis E., Giannoudis P.V. Current Concepts of Molecular Aspects of Bone Healing. Injury. 2005;36:1392–1404. doi: 10.1016/j.injury.2005.07.019. 10.1016/j.injury.2005.07.019 16102764 Alexander K.A., Raggatt L.J., Millard S., Batoon L., Wu A.C.-K., Chang M.K., Hume D.A., Pettit A.R. Resting and Injury-Induced Inflamed Periosteum Contain Multiple Macrophage Subsets That Are Located at Sites of Bone Growth and Regeneration. Immunol. Cell Biol. 2017;95:7–16. doi: 10.1038/icb.2016.74. 10.1038/icb.2016.74 27553584 Raggatt L.J., Wullschleger M.E., Alexander K.A., Wu A.C., Millard S.M., Kaur S., Maugham M.L., Gregory L.S., Steck R., Pettit A.R. Fracture Healing Via Periosteal Callus Formation Requires Macrophages for Both Initiation and Progression of Early Endochondral Ossification. Am. J. Pathol. 2014;184:3192–3204. doi: 10.1016/j.ajpath.2014.08.017. 10.1016/j.ajpath.2014.08.017 25285719 Qiu P., Li M., Chen K., Fang B., Chen P., Tang Z., Lin X., Fan S. Periosteal Matrix-Derived Hydrogel Promotes Bone Repair through an Early Immune Regulation Coupled with Enhanced Angio- and Osteogenesis. Biomaterials. 2020;227:119552. doi: 10.1016/j.biomaterials.2019.119552. 10.1016/j.biomaterials.2019.119552 31670079 Chang M.K., Raggatt L.J., Alexander K.A., Kuliwaba J.S., Fazzalari N.L., Schroder K., Maylin E.R., Ripoll V.M., Hume D.A., Pettit A.R. Osteal Tissue Macrophages Are Intercalated Throughout Human and Mouse Bone Lining Tissues and Regulate Osteoblast Function in Vitro and in Vivo. J. Immunol. 2008;181:1232–1244. doi: 10.4049/jimmunol.181.2.1232. 10.4049/jimmunol.181.2.1232 18606677 Schlundt C., El Khassawna T., Serra A., Dienelt A., Wendler S., Schell H., van Rooijen N., Radbruch A., Lucius R., Hartmann S., et al. Macrophages in Bone Fracture Healing: Their Essential Role in Endochondral Ossification. Bone. 2018;106:78–89. doi: 10.1016/j.bone.2015.10.019. 10.1016/j.bone.2015.10.019 26529389 Gao B., Deng R., Chai Y., Chen H., Hu B., Wang X., Zhu S., Cao Y., Ni S., Wan M., et al. Macrophage-Lineage Trap+ Cells Recruit Periosteum-Derived Cells for Periosteal Osteogenesis and Regeneration. J. Clin. Investig. 2019;129:2578–2594. doi: 10.1172/JCI98857. 10.1172/JCI98857 PMC6538344 30946695 Zhang Y., Bose T., Unger R.E., Jansen J.A., Kirkpatrick C.J., van den Beucken J. Macrophage Type Modulates Osteogenic Differentiation of Adipose Tissue Mscs. Cell Tissue Res. 2017;369:273–286. doi: 10.1007/s00441-017-2598-8. 10.1007/s00441-017-2598-8 PMC5552848 28361303 Nicolaidou V., Wong M.M., Redpath A.N., Ersek A., Baban D.F., Williams L.M., Cope A.P., Horwood N.J. Monocytes Induce Stat3 Activation in Human Mesenchymal Stem Cells to Promote Osteoblast Formation. PLoS ONE. 2012;7:e39871. doi: 10.1371/journal.pone.0039871. 10.1371/journal.pone.0039871 PMC3389003 22802946 Nikovics K., Durand M., Castellarin C., Burger J., Sicherre E., Collombet J.M., Oger M., Holy X., Favier A.L. Macrophages Characterization in an Injured Bone Tissue. Biomedicines. 2022;10:1385. doi: 10.3390/biomedicines10061385. 10.3390/biomedicines10061385 PMC9219779 35740407 Jarde T., Chan W.H., Rossello F.J., Kahlon T.K., Theocharous M., Arackal T.K., Flores T., Giraud M., Richards E., Chan E., et al. Mesenchymal Niche-Derived Neuregulin-1 Drives Intestinal Stem Cell Proliferation and Regeneration of Damaged Epithelium. Cell Stem Cell. 2020;27:646–662.e7. doi: 10.1016/j.stem.2020.06.021. 10.1016/j.stem.2020.06.021 32693086 38917963 2024 08 14 2024 08 14 1873-2763 187 2024 Oct Bone Bone UBE2C orchestrates bone formation through stabilization of SMAD1/5. 117175 117175 10.1016/j.bone.2024.117175 S8756-3282(24)00164-9 While previous studies have demonstrated the role of ubiquitin-conjugating enzyme 2C (UBE2C) in promoting β-cell proliferation and cancer cell lineage expansion, its specific function and mechanism in bone marrow mesenchymal stem/stromal cells (BMSCs) growth and differentiation remain poorly understood. Our findings indicate that mice with conditional Ube2c deletions in BMSCs and osteoblasts exhibit reduced skeletal bone mass and impaired bone repair. A significant reduction in the proliferative capacity of BMSCs was observed in conditional Ube2c knockout mice, with no effect on apoptosis. Additionally, conditional Ube2c knockout mice exhibited enhanced osteoclastic activity and reduced osteogenic differentiation. Furthermore, human BMSCs with stable UBE2C knockdown exhibited diminished capacity for osteogenic differentiation. Mechanistically, we discovered that UBE2C binds to and stabilizes SMAD1/5 protein expression levels. Interestingly, UBE2C's role in regulating osteogenic differentiation and SMAD1/5 expression levels appears to be independent of its enzymatic activity. Notably, UBE2C regulates osteogenic differentiation through SMAD1/5 signaling. In conclusion, our findings underscore the pivotal role of UBE2C in bone formation, emphasizing its contribution to enhanced osteogenic differentiation through the stabilization of SMAD1/5. These results propose UBE2C as a promising target for BMSC-based bone regeneration. Copyright © 2024. Published by Elsevier Inc. Zhang Hui H Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China. Du Yangge Y Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China. Lu Dazhuang D Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China. Wang Xu X Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China. Li Yang Y Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China. Qing Jia J Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China. Zhang Yingfei Y Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China. Liu Hao H Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China. Lv Longwei L Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China. Zhang Xiao X Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China. Liu Yunsong Y Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China. Zhou Yongsheng Y Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China. Electronic address: kqzhouysh@hsc.pku.edu.cn. Zhang Ping P Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China. Electronic address: zhangping332@bjmu.edu.cn. eng Journal Article 2024 06 23 United States Bone 8504048 1873-2763 0 Smad1 Protein EC 2.3.2.23 Ubiquitin-Conjugating Enzymes 0 Smad5 Protein IM Animals Osteogenesis physiology Smad1 Protein metabolism Ubiquitin-Conjugating Enzymes metabolism Humans Cell Differentiation physiology Mice, Knockout Smad5 Protein metabolism Mesenchymal Stem Cells metabolism cytology Mice Signal Transduction Cell Proliferation Protein Stability Osteoblasts metabolism Osteoclasts metabolism cytology BMSCs Bone formation SMAD1 SMAD5 UBE2C Declaration of competing interest The authors declare no competing interests. 2024 5 4 2024 6 18 2024 6 19 2024 8 15 0 42 2024 6 26 0 42 2024 6 25 19 18 ppublish 38917963 10.1016/j.bone.2024.117175 S8756-3282(24)00164-9 38013618 2024 07 08 2024 07 10 2576-2095 7 3 2024 Jun Animal models and experimental medicine Animal Model Exp Med Cinobufotalin prevents bone loss induced by ovariectomy in mice through the BMPs/SMAD and Wnt/β-catenin signaling pathways. 208 221 208-221 10.1002/ame2.12359 Osteoporosis is a chronic bone disease characterized by bone loss and decreased bone strength. However, current anti-resorptive drugs carry a risk of various complications. The deep learning-based efficacy prediction system (DLEPS) is a forecasting tool that can effectively compete in drug screening and prediction based on gene expression changes. This study aimed to explore the protective effect and potential mechanisms of cinobufotalin (CB), a traditional Chinese medicine (TCM), on bone loss. DLEPS was employed for screening anti-osteoporotic agents according to gene profile changes in primary osteoporosis. Micro-CT, histological and morphological analysis were applied for the bone protective detection of CB, and the osteogenic differentiation/function in human bone marrow mesenchymal stem cells (hBMMSCs) were also investigated. The underlying mechanism was verified using qRT-PCR, Western blot (WB), immunofluorescence (IF), etc. RESULTS: A safe concentration (0.25 mg/kg in vivo, 0.05 μM in vitro) of CB could effectively preserve bone mass in estrogen deficiency-induced bone loss and promote osteogenic differentiation/function of hBMMSCs. Both BMPs/SMAD and Wnt/β-catenin signaling pathways participated in CB-induced osteogenic differentiation, further regulating the expression of osteogenesis-associated factors, and ultimately promoting osteogenesis. Our study demonstrated that CB could significantly reverse estrogen deficiency-induced bone loss, further promoting osteogenic differentiation/function of hBMMSCs, with BMPs/SMAD and Wnt/β-catenin signaling pathways involved. © 2023 The Author(s). Animal Models and Experimental Medicine published by John Wiley & Sons Australia, Ltd on behalf of The Chinese Association for Laboratory Animal Sciences. Lu Da-Zhuang DZ Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China. National Center of Stomatology, Beijing, China. National Clinical Research Center for Oral Diseases, Beijing, China. Beijing Key Laboratory of Digital Stomatology, Beijing, China. Zeng Li-Jun LJ Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China. National Center of Stomatology, Beijing, China. National Clinical Research Center for Oral Diseases, Beijing, China. Beijing Key Laboratory of Digital Stomatology, Beijing, China. Li Yang Y Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China. National Center of Stomatology, Beijing, China. National Clinical Research Center for Oral Diseases, Beijing, China. Beijing Key Laboratory of Digital Stomatology, Beijing, China. Gu Ran-Li RL Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China. National Center of Stomatology, Beijing, China. National Clinical Research Center for Oral Diseases, Beijing, China. Beijing Key Laboratory of Digital Stomatology, Beijing, China. Hu Meng-Long ML Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China. National Center of Stomatology, Beijing, China. National Clinical Research Center for Oral Diseases, Beijing, China. Beijing Key Laboratory of Digital Stomatology, Beijing, China. Zhang Ping P Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China. National Center of Stomatology, Beijing, China. National Clinical Research Center for Oral Diseases, Beijing, China. Beijing Key Laboratory of Digital Stomatology, Beijing, China. Yu Peng P National Center of Stomatology, Beijing, China. National Clinical Research Center for Oral Diseases, Beijing, China. Beijing Key Laboratory of Digital Stomatology, Beijing, China. Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, China. Zhang Xiao X Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China. National Center of Stomatology, Beijing, China. National Clinical Research Center for Oral Diseases, Beijing, China. Beijing Key Laboratory of Digital Stomatology, Beijing, China. Xie Zheng-Wei ZW Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, China. Liu Hao H 0000-0003-0977-5884 Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China. National Center of Stomatology, Beijing, China. National Clinical Research Center for Oral Diseases, Beijing, China. Beijing Key Laboratory of Digital Stomatology, Beijing, China. Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China. Zhou Yong-Sheng YS Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China. National Center of Stomatology, Beijing, China. National Clinical Research Center for Oral Diseases, Beijing, China. Beijing Key Laboratory of Digital Stomatology, Beijing, China. Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China. National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China. eng L222145 Beijing Natural Science Foundation L222030 Beijing Natural Science Foundation PKU2022XGK008 Emerging Engineering Interdisciplinary Project and the Fundamental Research Funds for the Central Universities BMU2022PY010 Peking University Medicine Fund of Fostering Young Scholars' Scientific & Technological Innovation Journal Article 2023 11 28 United States Animal Model Exp Med 101726292 2576-2095 0 Bufanolides L0QBZ37386 cinobufotalin 0 Bone Morphogenetic Proteins 0 Smad Proteins IM Animals Bufanolides pharmacology Wnt Signaling Pathway drug effects Female Ovariectomy adverse effects Mice Osteoporosis prevention & control Humans Bone Morphogenetic Proteins metabolism Osteogenesis drug effects Smad Proteins metabolism Mesenchymal Stem Cells drug effects metabolism Cell Differentiation drug effects BMPs/SMAD Wnt/β‐catenin signaling pathways bone loss cinobufotalin hBMMSCs osteogenesis osteoporosis Authors declare that there are no conflicts of interest regarding the publication of this article. 2023 8 30 2023 10 16 2024 7 8 6 42 2023 11 28 6 42 2023 11 28 3 47 2023 11 28 ppublish 38013618 PMC11228090 10.1002/ame2.12359 Bouvard B, Annweiler C, Legrand E. Osteoporosis in older adults. Joint Bone Spine. 2021;88:105135. doi:10.1016/j.jbspin.2021.105135 10.1016/j.jbspin.2021.105135 33486108 Kanis JA, Cooper C, Rizzoli R, Reginster JY, Scientific Advisory Board of the European Society for C, Economic Aspects of O, the Committees of Scientific A, National Societies of the International Osteoporosis F . European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2019;30:3‐44. doi:10.1007/s00198-018-4704-5 10.1007/s00198-018-4704-5 PMC7026233 30324412 Tounta TS. Diagnosis of osteoporosis in dental patients. J Frailty Sarcopenia Falls. 2017;2:21‐27. PMC7155378 32300679 Langdahl B. Treatment of postmenopausal osteoporosis with bone‐forming and antiresorptive treatments: combined and sequential approaches. Bone. 2020;139:115516. doi:10.1016/j.bone.2020.115516 10.1016/j.bone.2020.115516 32622871 Khosla S, Hofbauer LC. Osteoporosis treatment: recent developments and ongoing challenges. Lancet Diabetes Endocrinol. 2017;5:898‐907. doi:10.1016/S2213-8587(17)30188-2 10.1016/S2213-8587(17)30188-2 PMC5798872 28689769 Anastasilakis AD, Toulis KA, Polyzos SA, Anastasilakis CD, Makras P. Long‐term treatment of osteoporosis: safety and efficacy appraisal of denosumab. Ther Clin Risk Manag. 2012;8:295‐306. doi:10.2147/TCRM.S24239 10.2147/TCRM.S24239 PMC3387828 22767993 Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1‐34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344:1434‐1441. doi:10.1056/NEJM200105103441904 10.1056/NEJM200105103441904 11346808 Borba VZ, Manas NC. The use of PTH in the treatment of osteoporosis. Arq Bras Endocrinol Metabol. 2010;54:213‐219. doi:10.1590/s0004-27302010000200018 10.1590/s0004-27302010000200018 20485911 Mi B, Xiong W, Xu N, et al. Strontium‐loaded titania nanotube arrays repress osteoclast differentiation through multiple signalling pathways: in vitro and in vivo studies. Sci Rep. 2017;7:2328. doi:10.1038/s41598-017-02491-9 10.1038/s41598-017-02491-9 PMC5443803 28539667 Langdahl BL, Libanati C, Crittenden DB, et al. Romosozumab (sclerostin monoclonal antibody) versus teriparatide in postmenopausal women with osteoporosis transitioning from oral bisphosphonate therapy: a randomised, open‐label, phase 3 trial. Lancet. 2017;390:1585‐1594. doi:10.1016/S0140-6736(17)31613-6 10.1016/S0140-6736(17)31613-6 28755782 Ye Y, Wen Y, Zhang Z, He S, Bo X. Drug‐target interaction prediction based on adversarial Bayesian personalized ranking. Biomed Res Int. 2021;2021:6690154. doi:10.1155/2021/6690154 10.1155/2021/6690154 PMC7889346 33628808 Jahan I, Sakib SA, Alam N, Majumder M, Sharmin S, Reza ASMA. Pharmacological insights into Chukrasia velutina bark: Experimental and computer‐aided approaches. Animal Model Exp Med. 2022;5(4):377‐388. doi:10.1002/ame2.12268. PMID: 36047481; PMCID: PMC9434563. 10.1002/ame2.12268 PMC9434563 36047481 de Sousa Luis JA, Barros RPC, de Sousa NF, Muratov E, Scotti L, Scotti MT. Virtual screening of natural products database. Mini Rev Med Chem. 2021;21:2657‐2730. doi:10.2174/1389557520666200730161549 10.2174/1389557520666200730161549 32744975 Chen B, Harrison RF, Papadatos G, et al. Evaluation of machine‐learning methods for ligand‐based virtual screening. J Comput Aided Mol Des. 2007;21:53‐62. doi:10.1007/s10822-006-9096-5 10.1007/s10822-006-9096-5 17205373 Lamb J, Crawford ED, Peck D, et al. The connectivity map: using gene‐expression signatures to connect small molecules, genes, and disease. Science. 2006;313:1929‐1935. doi:10.1126/science.1132939 10.1126/science.1132939 17008526 Zhu J, Wang J, Wang X, et al. Prediction of drug efficacy from transcriptional profiles with deep learning. Nat Biotechnol. 2021;39:1444‐1452. doi:10.1038/s41587-021-00946-z 10.1038/s41587-021-00946-z 34140681 Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal stem cells for regenerative medicine. Cells. 2019;8:886. doi:10.3390/cells8080886 10.3390/cells8080886 PMC6721852 31412678 Andrzejewska A, Lukomska B, Janowski M. Concise review: mesenchymal stem cells: from roots to boost. Stem Cells. 2019;37:855‐864. doi:10.1002/stem.3016 10.1002/stem.3016 PMC6658105 30977255 Chen G, Deng C, Li YP. TGF‐beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 2012;8:272‐288. doi:10.7150/ijbs.2929 10.7150/ijbs.2929 PMC3269610 22298955 Wu M, Chen G, Li YP. TGF‐beta and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 2016;4:16009. doi:10.1038/boneres.2016.9 10.1038/boneres.2016.9 PMC4985055 27563484 Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013;19:179‐192. doi:10.1038/nm.3074 10.1038/nm.3074 23389618 Tezuka K, Yasuda M, Watanabe N, et al. Stimulation of osteoblastic cell differentiation by notch. J Bone Miner Res. 2002;17:231‐239. doi:10.1359/jbmr.2002.17.2.231 10.1359/jbmr.2002.17.2.231 11811553 Komori T. Regulation of osteoblast differentiation by transcription factors. J Cell Biochem. 2006;99:1233‐1239. doi:10.1002/jcb.20958 10.1002/jcb.20958 16795049 Xu J, Qian SS, Chen YG, Li DY, Yan Q. Systematic review and meta‐analysis of efficacy and safety of Huachansu in treating cancer‐related pain. Zhongguo Zhong Yao Za Zhi. 2019;44:2627‐2636. doi:10.19540/j.cnki.cjcmm.20190304.003 10.19540/j.cnki.cjcmm.20190304.003 31359733 Guo N, Miao Y, Sun M. Transcatheter hepatic arterial chemoembolization plus cinobufotalin injection adjuvant therapy for advanced hepatocellular carcinoma: a meta‐analysis of 27 trials involving 2,079 patients. Onco Targets Ther. 2018;11:8835‐8853. doi:10.2147/OTT.S182840 10.2147/OTT.S182840 PMC6290874 30573972 Han Y, Ma R, Cao G, et al. Combined treatment of cinobufotalin and gefitinib exhibits potent efficacy against lung cancer. Evid Based Complement Alternat Med. 2021;2021:6612365. doi:10.1155/2021/6612365 10.1155/2021/6612365 PMC8189783 34122599 Wang J, Chang H, Su M, et al. The potential mechanisms of cinobufotalin treating colon adenocarcinoma by network pharmacology. Front Pharmacol. 2022;13:934729. doi:10.3389/fphar.2022.934729 10.3389/fphar.2022.934729 PMC9262105 35814224 Chen R, Guan Z, Zhong X, Zhang W, Zhang Y. Network pharmacology prediction: the possible mechanisms of Cinobufotalin against osteosarcoma. Comput Math Methods Med. 2022;2022:3197402. doi:10.1155/2022/3197402 10.1155/2022/3197402 PMC8776428 35069780 Benisch P, Schilling T, Klein‐Hitpass L, et al. The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors. PLoS One. 2012;7:e45142. doi:10.1371/journal.pone.0045142 10.1371/journal.pone.0045142 PMC3454401 23028809 Rossouw JE, Anderson GL, Prentice RL, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women's Health Initiative randomized controlled trial. JAMA. 2002;288:321‐333. doi:10.1001/jama.288.3.321 10.1001/jama.288.3.321 12117397 Khojastepour L, Hasani M, Ghasemi M, Mehdizadeh AR, Tajeripour F. Mandibular trabecular bone analysis using local binary pattern for osteoporosis diagnosis. J Biomed Phys Eng. 2019;9:81‐88. PMC6409375 30881937 Liu H, Gu R, Zhu Y, et al. D‐mannose attenuates bone loss in mice via Treg cell proliferation and gut microbiota‐dependent anti‐inflammatory effects. Ther Adv Chronic Dis. 2020;11:2040622320912661. doi:10.1177/2040622320912661 10.1177/2040622320912661 PMC7169364 32341776 Qin C. Deepen the understanding and communication of animal models and experimental medicine research studies. Animal Model Exp Med. 2021;12:1. doi:10.1002/ame2.12156. PMID: 33738431; PMCID: PMC7954831. 10.1002/ame2.12156 PMC7954831 33738431 Xian Y, Su Y, Liang J, et al. Oroxylin a reduces osteoclast formation and bone resorption via suppressing RANKL‐induced ROS and NFATc1 activation. Biochem Pharmacol. 2021;193:114761. doi:10.1016/j.bcp.2021.114761 10.1016/j.bcp.2021.114761 34492273 Xue XH, Xue JX, Hu W, Shi FL, Yang Y. Nomilin targets the Keap1‐Nrf2 signalling and ameliorates the development of osteoarthritis. J Cell Mol Med. 2020;24:8579‐8588. doi:10.1111/jcmm.15484 10.1111/jcmm.15484 PMC7412705 32564468 de Castro MJ, de Lamas C, Sanchez‐Pintos P, Gonzalez‐Lamuno D, Couce ML. Bone status in patients with phenylketonuria: a systematic review. Nutrients. 2020;12:2154. doi:10.3390/nu12072154 10.3390/nu12072154 PMC7400926 32698408 Park TJ, Hong H, Kim MS, Park JS, Chi WJ, Kim SY. Prunetin 4'‐O‐phosphate, a novel compound, in RAW 264.7 macrophages exerts anti‐inflammatory activity via suppression of MAP kinases and the NFκB pathway. Molecules. 2021;26:6841. doi:10.3390/molecules26226841 10.3390/molecules26226841 PMC8622051 34833933 Jdidi H, Ghorbel Koubaa F, Aoiadni N, Elleuch A, Makni‐Ayadi F, El Feki A. Effect of Medicago sativa compared to 17beta‐oestradiol on osteoporosis in ovariectomized mice. Arch Physiol Biochemistry. 2022;128:951‐958. doi:10.1080/13813455.2020.1741644 10.1080/13813455.2020.1741644 32193946 Hadrich F, Sayadi S. Apigetrin inhibits adipogenesis in 3T3‐L1 cells by downregulating PPARgamma and CEBP‐alpha. Lipids Health Dis. 2018;17:95. doi:10.1186/s12944-018-0738-0 10.1186/s12944-018-0738-0 PMC5922308 29695233 Saeedi M, Goli F, Mahdavi M, et al. Synthesis and biological investigation of some novel sulfonamide and amide derivatives containing coumarin moieties. Iran J Pharm Res. 2014;13:881‐892. PMC4177648 25276188 Zhao BJ, Wang J, Song J, et al. Beneficial effects of a flavonoid fraction of Herba Epimedii on bone metabolism in ovariectomized rats. Planta Med. 2016;82:322‐329. doi:10.1055/s-0035-1558294 10.1055/s-0035-1558294 26824623 Fan Q, Zhao B, Wang C, et al. Subchronic toxicity studies of cortex dictamni extracts in mice and its potential hepatotoxicity mechanisms in vitro. Molecules. 2018;23:2486. doi:10.3390/molecules23102486 10.3390/molecules23102486 PMC6222383 30274140 Emons J, Chagin AS, Savendahl L, Karperien M, Wit JM. Mechanisms of growth plate maturation and epiphyseal fusion. Horm Res Paediatrician. 2011;75:383‐391. doi:10.1159/000327788 10.1159/000327788 21540578 Wheater G, Elshahaly M, Tuck SP, Datta HK, van Laar JM. The clinical utility of bone marker measurements in osteoporosis. J Transl Med. 2013;11:201. doi:10.1186/1479-5876-11-201 10.1186/1479-5876-11-201 PMC3765909 23984630 Watts NB, Bilezikian JP, Camacho PM, et al. American Association of Clinical Endocrinologists Medical Guidelines for clinical practice for the diagnosis and treatment of postmenopausal osteoporosis. Endocr Pract. 2010;16(Suppl 3):1‐37. doi:10.4158/ep.16.s3.1 10.4158/ep.16.s3.1 PMC4876714 21224201 Ilyas T, Jin H, Siddique MI, Lee SJ, Kim H, Chua L. DIANA: a deep learning‐based paprika plant disease and pest phenotyping system with disease severity analysis. Front Plant Sci. 2022;13:983625. doi:10.3389/fpls.2022.983625 10.3389/fpls.2022.983625 PMC9582859 36275542 Singh A, Chakraborty S, He Z, et al. Deep learning‐based predictions of older adults' adherence to cognitive training to support training efficacy. Front Psychol. 2022;13:980778. doi:10.3389/fpsyg.2022.980778 10.3389/fpsyg.2022.980778 PMC9713845 36467206 Hajjo R, Setola V, Roth BL, Tropsha A. Chemocentric informatics approach to drug discovery: identification and experimental validation of selective estrogen receptor modulators as ligands of 5‐hydroxytryptamine‐6 receptors and as potential cognition enhancers. J Med Chem. 2012;55:5704‐5719. doi:10.1021/jm2011657 10.1021/jm2011657 PMC3401608 22537153 Stokes JM, Yang K, Swanson K, et al. A deep learning approach to antibiotic discovery. Cell. 2020;180:688‐702.e13. doi:10.1016/j.cell.2020.01.021 10.1016/j.cell.2020.01.021 PMC8349178 32084340 Kai S, Lu JH, Hui PP, Zhao H. Pre‐clinical evaluation of cinobufotalin as a potential anti‐lung cancer agent. Biochem Biophys Res Commun. 2014;452:768‐774. doi:10.1016/j.bbrc.2014.08.147 10.1016/j.bbrc.2014.08.147 25201730 Sun H, Wang W, Bai M, Liu D. Cinobufotalin as an effective adjuvant therapy for advanced gastric cancer: a meta‐analysis of randomized controlled trials. Onco Targets Ther. 2019;12:3139‐3160. doi:10.2147/OTT.S196684 10.2147/OTT.S196684 PMC6507077 31118669 Emam H, Refaat A, Jawaid P, et al. Hyperthermia and radiation reduce the toxic side‐effects of bufadienolides for cancer therapy. Oncol Lett. 2017;14:1035‐1040. doi:10.3892/ol.2017.6256 10.3892/ol.2017.6256 PMC5494654 28693270 Abbasnezhad A, Salami F, Mohebbati R. A review: Systematic research approach on toxicity model of liver and kidney in laboratory animals. Animal Model Exp. 2022;5:436‐444. doi:10.1002/ame2.12230. Epub 2022 Aug 2. PMID: 35918879; PMCID: PMC9610155. 10.1002/ame2.12230 PMC9610155 35918879 Cheng L, Chen YZ, Peng Y, et al. Ceramide production mediates cinobufotalin‐induced growth inhibition and apoptosis in cultured hepatocellular carcinoma cells. Tumour Biol. 2015;36:5763‐5771. doi:10.1007/s13277-015-3245-1 10.1007/s13277-015-3245-1 25724183 Meng H, Shen M, Li J, et al. Novel SREBP1 inhibitor cinobufotalin suppresses proliferation of hepatocellular carcinoma by targeting lipogenesis. Eur J Pharmacol. 2021;906:174280. doi:10.1016/j.ejphar.2021.174280 10.1016/j.ejphar.2021.174280 34174265 Kawai T, Katagiri W, Osugi M, Sugimura Y, Hibi H, Ueda M. Secretomes from bone marrow‐derived mesenchymal stromal cells enhance periodontal tissue regeneration. Cytotherapy. 2015;17:369‐381. doi:10.1016/j.jcyt.2014.11.009 10.1016/j.jcyt.2014.11.009 25595330 Katagiri T, Watabe T. Bone morphogenetic proteins. Cold Spring Harb Perspect Biol. 2016;8:a021899. doi:10.1101/cshperspect.a021899 10.1101/cshperspect.a021899 PMC4888821 27252362 Miyazono K, Kamiya Y, Morikawa M. Bone morphogenetic protein receptors and signal transduction. J Biochem. 2010;147:35‐51. doi:10.1093/jb/mvp148 10.1093/jb/mvp148 19762341 Ma X, Yang J, Liu T, et al. Gukang capsule promotes fracture healing by activating BMP/SMAD and Wnt/beta‐catenin signaling pathways. Evid Based Complement Alternat Med. 2020;2020:7184502. doi:10.1155/2020/7184502 10.1155/2020/7184502 PMC7545469 33062020 Li Y, Jin D, Xie W, et al. PPAR‐gamma and Wnt regulate the differentiation of MSCs into adipocytes and osteoblasts respectively. Curr Stem Cell Res Ther. 2018;13:185‐192. doi:10.2174/1574888X12666171012141908 10.2174/1574888X12666171012141908 29034841 Verkaar F, Zaman GJ. New avenues to target Wnt/beta‐catenin signaling. Drug Discov Today. 2011;16:35‐41. doi:10.1016/j.drudis.2010.11.007 10.1016/j.drudis.2010.11.007 21111060 37626688 2023 08 28 2227-9059 11 8 2023 Aug 03 Biomedicines Biomedicines BHLHE40 Maintains the Stemness of PαS Cells In Vitro by Targeting Zbp1 through the Wnt/β-Catenin Signaling Pathway. 2190 10.3390/biomedicines11082190 Primary bone mesenchymal stem cells (BMSCs) gradually lose stemness during in vitro expansion, which significantly affects the cell therapeutic effects. Here, we chose murine PαS (SCA-1+ PDGFRα+ CD45- TER119- ) cells as representative of BMSCs and aimed to explore the premium culture conditions for PαS cells. Freshly isolated (fresh) PαS cells were obtained from the limbs of C57/6N mice by fluorescence-activated cell sorting (FACS). We investigated the differences in the stemness of PαS cells by proliferation, differentiation, and stemness markers in vitro and by ectopic osteogenesis and chondrogenesis ability in vivo, as well as the changes in the stemness of PαS cells during expansion in vitro. Gain- and loss-of-function experiments were applied to investigate the critical role and underlying mechanism of the basic helix-loop-helix family member E40 (BHLHE40) in maintaining the stemness of PαS cells. The stemness of fresh PαS cells representative in vivo was superior to that of passage 0 (P0) PαS cells in vitro. The stemness of PαS cells in vitro decreased gradually from P0 to passage 4 (P4). Moreover, BHLHE40 plays a critical role in regulating the stemness of PαS cells during in vitro expansion. Mechanically, BHLHE40 regulates the stemness of PαS cells by targeting Zbp1 through the Wnt/β-catenin signaling pathway. This work confirms that BHLHE40 is a critical factor for regulating the stemness of PαS cells during expansion in vitro and may provide significant indications in the exploration of premium culture conditions for PαS cells. Hu Menglong M Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Tian Yueming Y 0000-0002-7027-7836 Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Liu Xuenan X Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Guo Qian Q Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Lu Dazhuang D Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Wang Xu X 0000-0002-8466-0828 Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Lv Longwei L Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Zhang Xiao X Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Liu Yunsong Y 0000-0001-8364-1898 Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Zhou Yongsheng Y 0000-0002-4332-0878 Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Zhang Ping P Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. eng 81970911 National Natural Science Foundation of China 81930026 National Natural Science Foundation of China Journal Article 2023 08 03 Switzerland Biomedicines 101691304 2227-9059 BHLHE40 PαS cells Wnt/β-catenin signaling pathway Zbp1 culture in vitro stemness The authors declare no conflict of interest. 2023 6 23 2023 7 30 2023 8 1 2023 8 26 10 43 2023 8 26 10 42 2023 8 26 1 1 2023 8 3 epublish 37626688 PMC10452820 10.3390/biomedicines11082190 biomedicines11082190 Bieback K., Hecker A., Kocaömer A., Lannert H., Schallmoser K., Strunk D., Klüter H. Human Alternatives to Fetal Bovine Serum for the Expansion of Mesenchymal Stromal Cells from Bone Marrow. Stem Cells. 2009;27:2331–2341. doi: 10.1002/stem.139. 10.1002/stem.139 19544413 Lin G.L., Hankenson K.D. Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J. Cell. Biochem. 2011;112:3491–3501. doi: 10.1002/jcb.23287. 10.1002/jcb.23287 PMC3202082 21793042 Leveque X., Hochane M., Geraldo F., Dumont S., Gratas C., Oliver L., Gaignier C., Trichet V., Layrolle P., Heymann D., et al. Low-Dose Pesticide Mixture Induces Accelerated Mesenchymal Stem Cell Aging In Vitro. Stem Cells. 2019;37:1083–1094. doi: 10.1002/stem.3014. 10.1002/stem.3014 PMC6850038 30977188 Pasumarthy K.K., Jayavelu N.D., Kilpinen L., Andrus C., Battle S.L., Korhonen M., Lehenkari P., Lund R., Laitinen S., Hawkins R.D. Methylome Analysis of Human Bone Marrow MSCs Reveals Extensive Age- and Culture-Induced Changes at Distal Regulatory Elements. Stem Cell Rep. 2017;9:999–1015. doi: 10.1016/j.stemcr.2017.07.018. 10.1016/j.stemcr.2017.07.018 PMC5599244 28844656 Tokalov S.V., Grüner S., Schindler S., Wolf G., Baumann M., Abolmaali N. Age-Related Changes in the Frequency of Mesenchymal Stem Cells in the Bone Marrow of Rats. Stem Cells Dev. 2007;16:439–446. doi: 10.1089/scd.2006.0078. 10.1089/scd.2006.0078 17610374 Bourillot P.-Y., Savatier P. Krüppel-like transcription factors and control of pluripotency. BMC Biol. 2010;8:125–127. doi: 10.1186/1741-7007-8-125. 10.1186/1741-7007-8-125 PMC2946285 20875146 Rombouts W.J.C., E Ploemacher R. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia. 2003;17:160–170. doi: 10.1038/sj.leu.2402763. 10.1038/sj.leu.2402763 12529674 Abbuehl J.-P., Tatarova Z., Held W., Huelsken J. Long-Term Engraftment of Primary Bone Marrow Stromal Cells Repairs Niche Damage and Improves Hematopoietic Stem Cell Transplantation. Cell Stem Cell. 2017;21:241–255.e6. doi: 10.1016/j.stem.2017.07.004. 10.1016/j.stem.2017.07.004 28777945 Mo C., Guo J., Qin J., Zhang X., Sun Y., Wei H., Cao D., Zhang Y., Zhao C., Xiong Y., et al. Single-cell transcriptomics of LepR-positive skeletal cells reveals heterogeneous stress-dependent stem and progenitor pools. EMBO J. 2022;41:e108415. doi: 10.15252/embj.2021108415. 10.15252/embj.2021108415 PMC8844986 34957577 Peister A., Mellad J.A., Larson B.L., Hall B.M., Gibson L.F., Prockop D.J. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood. 2004;103:1662–1668. doi: 10.1182/blood-2003-09-3070. 10.1182/blood-2003-09-3070 14592819 Morikawa S., Mabuchi Y., Kubota Y., Nagai Y., Niibe K., Hiratsu E., Suzuki S., Miyauchi-Hara C., Nagoshi N., Sunabori T., et al. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J. Exp. Med. 2009;206:2483–2496. doi: 10.1084/jem.20091046. 10.1084/jem.20091046 PMC2768869 19841085 Ogawa Y., Morikawa S., Okano H., Mabuchi Y., Suzuki S., Yaguchi T., Sato Y., Mukai S., Yaguchi S., Inaba T., et al. MHC-compatible bone marrow stromal/stem cells trigger fibrosis by activating host T cells in a scleroderma mouse model. Elife. 2016;5:e09394. doi: 10.7554/eLife.09394. 10.7554/eLife.09394 PMC4739756 26809474 Ow J.R., Tan Y.H., Jin Y., Bahirvani A.G., Taneja R. Stra13 and Sharp-1, the Non-Grouchy Regulators of Development and Disease. Curr. Top. Dev. Biol. 2014;110:317–338. 25248481 Zhu Y., Xu L., Zhang J., Hu X., Liu Y., Yin H., Lv T., Zhang H., Liu L., An H., et al. Sunitinib induces cellular senescence via p53/Dec1 activation in renal cell carcinoma cells. Cancer Sci. 2013;104:1052–1061. doi: 10.1111/cas.12176. 10.1111/cas.12176 PMC7657144 23578198 Iizuka K., Horikawa Y. Regulation of lipogenesis via BHLHB2/DEC1 and ChREBP feedback looping. Biochem. Biophys. Res. Commun. 2008;374:95–100. doi: 10.1016/j.bbrc.2008.06.101. 10.1016/j.bbrc.2008.06.101 18602890 Gosselin D., Link V.M., Romanoski C.E., Fonseca G.J., Eichenfield D.Z., Spann N.J., Stender J.D., Chun H.B., Garner H., Geissmann F., et al. Environment Drives Selection and Function of Enhancers Controlling Tissue-Specific Macrophage Identities. Cell. 2014;159:1327–1340. doi: 10.1016/j.cell.2014.11.023. 10.1016/j.cell.2014.11.023 PMC4364385 25480297 Zafar A., Ng H.P., Kim G., Chan E.R., Mahabeleshwar G.H. BHLHE40 promotes macrophage pro-inflammatory gene expression and functions. FASEB J. 2021;35:e21940. doi: 10.1096/fj.202100944R. 10.1096/fj.202100944R PMC8607355 34551158 Rauschmeier R., Gustafsson C., Reinhardt A., A-Gonzalez N., Tortola L., Cansever D., Subramanian S., Taneja R., Rossner M.J., Sieweke M.H., et al. Bhlhe40 and Bhlhe41 transcription factors regulate alveolar macrophage self-renewal and identity. EMBO J. 2019;38:e101233. doi: 10.15252/embj.2018101233. 10.15252/embj.2018101233 PMC6769426 31414712 Teng Y., Zhao Y., Li M., Liu Y., Cheng P., Lv Y., Mao F., Chen W., Yang S., Hao C., et al. Upexpression of BHLHE40 in gastric epithelial cells increases CXCL12 production through interaction with p-STAT3 in Helicobacter pylori -associated gastritis. FASEB J. 2020;34:1169–1181. doi: 10.1096/fj.201900464RR. 10.1096/fj.201900464RR 31914631 Kiss Z., Mudryj M., Ghosh P.M. Non-circadian aspects of BHLHE40 cellular function in cancer. Genes Cancer. 2020;11:1–19. doi: 10.18632/genesandcancer.201. 10.18632/genesandcancer.201 PMC7289903 32577154 Jarjour N.N., Schwarzkopf E.A., Bradstreet T.R., Shchukina I., Lin C.-C., Huang S.C.-C., Lai C.-W., Cook M.E., Taneja R., Stappenbeck T.S., et al. Bhlhe40 mediates tissue-specific control of macrophage proliferation in homeostasis and type 2 immunity. Nat. Immunol. 2019;20:687–700. doi: 10.1038/s41590-019-0382-5. 10.1038/s41590-019-0382-5 PMC6531324 31061528 Yun Z., Maecker H.L., Johnson R.S., Giaccia A.J. Inhibition of PPAR gamma 2 gene expression by the HIF-1-regulated gene DEC1/Stra13: A mechanism for regulation of adipogenesis by hypoxia. Dev. Cell. 2002;2:331–341. doi: 10.1016/S1534-5807(02)00131-4. 10.1016/S1534-5807(02)00131-4 11879638 Ozaki N., Noshiro M., Kawamoto T., Nakashima A., Honda K., Fukuzaki-Dohi U., Honma S., Fujimoto K., Tanimoto K., Tanne K., et al. Regulation of basic helix-loop-helix transcription factors Dec1 and Dec2 by RORα and their roles in ad-ipogenesis. Genes Cells. 2012;17:109–121. doi: 10.1111/j.1365-2443.2011.01574.x. 10.1111/j.1365-2443.2011.01574.x 22244086 Sethuraman A., Brown M., Krutilina R., Wu Z.-H., Seagroves T.N., Pfeffer L.M., Fan M. BHLHE40 confers a pro-survival and pro-metastatic phenotype to breast cancer cells by modulating HBEGF secretion. Breast Cancer Res. 2018;20:117–133. doi: 10.1186/s13058-018-1046-3. 10.1186/s13058-018-1046-3 PMC6167787 30285805 Chen Y., Henson E.S., Xiao W., Huang D., McMillan-Ward E.M., Israels S.J., Gibson S.B. Tyrosine kinase receptor EGFR regulates the switch in cancer cells between cell survival and cell death induced by autophagy in hypoxia. Autophagy. 2016;12:1029–1046. doi: 10.1080/15548627.2016.1164357. 10.1080/15548627.2016.1164357 PMC4922445 27166522 Jia Y., Hu R., Li P., Zheng Y., Wang Y., Ma X. DEC1 is required for anti-apoptotic activity of gastric cancer cells under hypoxia by promoting Survivin expression. Gastric Cancer. 2018;21:632–642. doi: 10.1007/s10120-017-0780-z. 10.1007/s10120-017-0780-z 29204860 Jia Y.-F., Xiao D.-J., Ma X.-L., Song Y.-Y., Hu R., Kong Y., Zheng Y., Han S.-Y., Hong R.-L., Wang Y.-S. Differentiated embryonic chondrocyte-expressed gene 1 is associated with hypoxia-inducible factor 1α and Ki67 in human gastric cancer. Diagn. Pathol. 2013;8:37–43. doi: 10.1186/1746-1596-8-37. 10.1186/1746-1596-8-37 PMC3606391 23445622 Xiong J., Yang H., Luo W., Shan E., Liu J., Zhang F., Xi T., Yang J. The anti-metastatic effect of 8-MOP on hepatocellular carcinoma is potentiated by the down-regulation of bHLH transcription factor DEC1. Pharmacol. Res. 2016;105:121–133. doi: 10.1016/j.phrs.2016.01.025. 10.1016/j.phrs.2016.01.025 26808085 Murakami K., Wu Y., Imaizumi T., Aoki Y., Liu Q., Yan X., Seino H., Yoshizawa T., Morohashi S., Kato Y., et al. DEC1 promotes hypoxia-induced epithelial-mesenchymal transition (EMT) in human hepatocellular carcinoma cells. Biomed. Res. 2017;38:221–227. doi: 10.2220/biomedres.38.221. 10.2220/biomedres.38.221 28794399 Nusspaumer G., Jaiswal S., Barbero A., Reinhardt R., Ronen D.I., Haumer A., Lufkin T., Martin I., Zeller R. Ontogenic Identification and Analysis of Mesenchymal Stromal Cell Populations during Mouse Limb and Long Bone Development. Stem Cell Rep. 2017;9:1124–1138. doi: 10.1016/j.stemcr.2017.08.007. 10.1016/j.stemcr.2017.08.007 PMC5639212 28919259 Lin X., Dong R., Diao S., Yu G., Wang L., Li J., Fan Z. SFRP2 enhanced the adipogenic and neuronal differentiation potentials of stem cells from apical papilla. Cell Biol. Int. 2017;41:534–543. doi: 10.1002/cbin.10757. 10.1002/cbin.10757 28244619 Wang J.-J., Dong R., Wang L.-P., Wang J.-S., Du J., Wang S.-L., Shan Z.-C., Fan Z.-P. Histone demethylase KDM2B inhibits the chondrogenic differentiation potentials of stem cells from apical papilla. Int. J. Clin. Exp. Med. 2015;8:2165–2173. PMC4402794 25932147 Liu X., Li Z., Liu H., Zhu Y., Xia D., Wang S., Gu R., Wu W., Zhang P., Liu Y., et al. Low concentration flufenamic acid enhances osteogenic differentiation of mesenchymal stem cells and suppresses bone loss by inhibition of the NF-κB signaling pathway. Stem Cell Res. Ther. 2019;10:213–226. doi: 10.1186/s13287-019-1321-y. 10.1186/s13287-019-1321-y PMC6642517 31324207 Zhang P., Liu Y., Jin C., Zhang M., Lv L., Zhang X., Liu H., Zhou Y. Histone H3K9 Acetyltransferase PCAF Is Essential for Osteogenic Differentiation Through Bone Morphogenetic Protein Signaling and May Be Involved in Osteoporosis. Stem Cells. 2016;34:2332–2341. doi: 10.1002/stem.2424. 10.1002/stem.2424 27300495 Min Z., Xiaomeng L., Zheng L., Yangge D., Xuejiao L., Longwei L., Xiao Z., Yunsong L., Ping Z., Yongsheng Z. Asymmetrical methyltransferase PRMT3 regulates human mesenchymal stem cell osteogenesis via miR-3648. Cell Death Dis. 2019;10:581–597. doi: 10.1038/s41419-019-1815-7. 10.1038/s41419-019-1815-7 PMC6680051 31378783 Zhang P., Liu Y., Wang Y., Zhang M., Lv L., Zhang X., Zhou Y. SIRT6 promotes osteogenic differentiation of mesenchymal stem cells through BMP signaling. Sci. Rep. 2017;7:10229–10238. doi: 10.1038/s41598-017-10323-z. 10.1038/s41598-017-10323-z PMC5578964 28860594 Nagele P. Misuse of standard error of the mean (SEM) when reporting variability of a sample. A critical evaluation of four anaesthesia journals. Br. J. Anaesth. 2003;90:514–516. doi: 10.1093/bja/aeg087. 10.1093/bja/aeg087 12644429 Barde M.P., Barde P.J. What to use to express the variability of data: Standard deviation or standard error of mean? Perspect Clin. Res. 2012;3:113–116. doi: 10.4103/2229-3485.100662. 10.4103/2229-3485.100662 PMC3487226 23125963 Jaykaran J. “Mean ± SEM” or “Mean (SD)”? Indian J. Pharmacol. 2010;42:329. doi: 10.4103/0253-7613.70402. 10.4103/0253-7613.70402 PMC2959222 21206631 Gomez-Larrauri A., Gangoiti P., Camacho L., Presa N., Martin C., Gomez-Muñoz A. Phosphatidic Acid Stimulates Lung Cancer Cell Migration through Interaction with the LPA1 Receptor and Subsequent Activation of MAP Kinases and STAT3. Biomedicines. 2023;11:1804–1821. doi: 10.3390/biomedicines11071804. 10.3390/biomedicines11071804 PMC10376810 37509443 Barbur I., Opris H., Colosi H.A., Baciut M., Opris D., Cuc S., Petean I., Moldovan M., Dinu C.M., Baciut G. Improving the Mechanical Properties of Orthodontic Occlusal Splints Using Nanoparticles: Silver and Zinc Oxide. Biomedicines. 2023;11:1965–1979. doi: 10.3390/biomedicines11071965. 10.3390/biomedicines11071965 PMC10377157 37509604 Yue F., Cheng Y., Breschi A., Vierstra J., Wu W., Ryba T., Sandstrom R., Ma Z., Davis C., Pope B.D., et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature. 2014;515:355–364. doi: 10.1038/nature13992. 10.1038/nature13992 PMC4266106 25409824 Zhao X., Xie L., Wang Z., Wang J., Xu H., Han X., Bai D., Deng P. ZBP1 (DAI/DLM-1) promotes osteogenic differentiation while inhibiting adipogenic differentiation in mesenchymal stem cells through a positive feedback loop of Wnt/β-catenin signaling. Bone Res. 2020;8:12–21. doi: 10.1038/s41413-020-0085-4. 10.1038/s41413-020-0085-4 PMC7058036 32195010 D’amico R., Cordaro M., Siracusa R., Impellizzeri D., Salinaro A.T., Scuto M., Ontario M.L., Crea R., Cuzzocrea S., Di Paola R., et al. Wnt/β-Catenin Pathway in Experimental Model of Fibromyalgia: Role of Hidrox®. Biomedicines. 2021;9:1683–1693. doi: 10.3390/biomedicines9111683. 10.3390/biomedicines9111683 PMC8615925 34829912 Chua K.-H., Safwani W.K.Z.W., Hamid A.A., Shuhup S.K., Haflah N.H.M., Yahaya N.H.M. Retropatellar fat pad–derived stem cells from older osteoarthritic patients have lesser differentiation capacity and expression of stemness genes. Cytotherapy. 2014;16:599–611. doi: 10.1016/j.jcyt.2013.08.013. 10.1016/j.jcyt.2013.08.013 24290076 Chen Q., Zhou H., Hu P. Stemness distinctions between the ectomesenchymal stem cells from neonatal and adult mice. Acta Histochem. 2017;119:822–830. doi: 10.1016/j.acthis.2017.10.008. 10.1016/j.acthis.2017.10.008 29107325 Tratwal J., Rojas-Sutterlin S., Bataclan C., Blum S., Naveiras O. Bone marrow adiposity and the hematopoietic niche: A historical perspective of reciprocity, heterogeneity, and lineage commitment. Best Pr. Res. Clin. Endocrinol. Metab. 2021;35:101564–101582. doi: 10.1016/j.beem.2021.101564. 10.1016/j.beem.2021.101564 34417114 Angelopoulos I., Brizuela C., Khoury M. Gingival Mesenchymal Stem Cells Outperform Haploidentical Dental Pulp-derived Mesenchymal Stem Cells in Proliferation Rate, Migration Ability, and Angiogenic Potential. Cell Transplant. 2018;27:967–978. doi: 10.1177/0963689718759649. 10.1177/0963689718759649 PMC6050910 29770705 Dhanasekaran M., Indumathi S., Lissa R.P., Harikrishnan R., Rajkumar J.S., Sudarsanam D. A comprehensive study on optimization of proliferation and differentiation potency of bone marrow derived mesenchymal stem cells under prolonged culture condition. Cytotechnology. 2013;65:187–197. doi: 10.1007/s10616-012-9471-0. 10.1007/s10616-012-9471-0 PMC3560878 22729554 Snippert H.J., Clevers H. Tracking adult stem cells. EMBO Rep. 2011;12:113–122. doi: 10.1038/embor.2010.216. 10.1038/embor.2010.216 PMC3049439 21252944 Baustian C., Hanley S., Ceredig R. Isolation, selection and culture methods to enhance clonogenicity of mouse bone marrow derived mesenchymal stromal cell precursors. Stem Cell Res. Ther. 2015;6:151–163. doi: 10.1186/s13287-015-0139-5. 10.1186/s13287-015-0139-5 PMC4549076 26303631 37298717 2023 06 12 2023 06 12 1422-0067 24 11 2023 Jun 05 International journal of molecular sciences Int J Mol Sci ZIM1 Combined with Hydrogel Inhibits Senescence of Primary PαS Cells during In Vitro Expansion. 9766 10.3390/ijms24119766 Bone marrow stem cells (BMSCs) are a promising source of seed cells in bone tissue engineering, which needs a great quantity of cells. Cell senescence occurs as they are passaged, which could affect the therapeutic effects of cells. Therefore, this study aims to explore the transcriptomic differences among the uncultured and passaged cells, finding a practical target gene for anti-aging. We sorted PαS (PDGFR-α+ SCA-1+ CD45- TER119- ) cells as BMSCs by flow cytometry analysis. The changes in cellular senescence phenotype (Counting Kit-8 (CCK-8) assay, reactive oxygen species (ROS) test, senescence-associated β-galactosidase (SA-β-Gal) activity staining, expression of aging-related genes, telomere-related changes and in vivo differentiation potential) and associated transcriptional alterations during three important cell culture processes (in vivo, first adherence in vitro, first passage, and serial passage in vitro) were studied. Overexpression plasmids of potential target genes were made and examed. Gelatin methacryloyl (GelMA) was applied to explore the anti-aging effects combined with the target gene. Aging-related genes and ROS levels increased, telomerase activity and average telomere length decreased, and SA-β-Gal activities increased as cells were passaged. RNA-seq offered that imprinted zinc-finger gene 1 (Zim1 ) played a critical role in anti-aging during cell culture. Further, Zim1 combined with GelMA reduced the expression of P16/P53 and ROS levels with doubled telomerase activities. Few SA-β-Gal positive cells were found in the above state. These effects are achieved at least by the activation of Wnt/β-catenin signaling through the regulation of Wnt2 . The combined application of Zim1 and hydrogel could inhibit the senescence of BMSCs during in vitro expansion, which may benefit clinical application. Tian Yueming Y 0000-0002-7027-7836 Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Hu Menglong M Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Liu Xuenan X Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Wang Xu X Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Lu Dazhuang D Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Li Zheng Z Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Liu Yunsong Y 0000-0001-8364-1898 Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Zhang Ping P Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Zhou Yongsheng Y 0000-0002-4332-0878 Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China. eng 7202233 Beijing Natural Science Foundation 81970911 National Natural Science Foundation of China 81930026 National Natural Science Foundation of China Journal Article 2023 06 05 Switzerland Int J Mol Sci 101092791 1422-0067 0 Reactive Oxygen Species EC 2.7.7.49 Telomerase 0 Hydrogels IM Reactive Oxygen Species metabolism Telomerase metabolism Hydrogels Cellular Senescence genetics Cells, Cultured Wnt pathway cellular senescence hydrogel stem cells transcriptomics The authors declare no conflict of interest. 2023 5 23 2023 5 31 2023 6 3 2023 6 12 6 43 2023 6 10 15 13 2023 6 10 1 14 2023 6 5 epublish 37298717 PMC10253596 10.3390/ijms24119766 ijms24119766 Horwitz E.M., Gordon P.L., Koo W.K., Marx J.C., Neel M.D., McNall R.Y., Muul L., Hofmann T. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc. Natl. Acad. Sci. USA. 2002;99:8932–8937. doi: 10.1073/pnas.132252399. 10.1073/pnas.132252399 PMC124401 12084934 Morikawa S., Mabuchi Y., Niibe K., Suzuki S., Nagoshi N., Sunabori T., Shimmura S., Nagai Y., Nakagawa T., Okano H., et al. Development of mesenchymal stem cells partially originate from the neural crest. Biochem. Biophys. Res. Commun. 2009;379:1114–1119. doi: 10.1016/j.bbrc.2009.01.031. 10.1016/j.bbrc.2009.01.031 19161980 Crippa S., Santi L., Bosotti R., Porro G., Bernardo M.E. Bone Marrow-Derived Mesenchymal Stromal Cells: A Novel Target to Optimize Hematopoietic Stem Cell Transplantation Protocols in Hematological Malignancies and Rare Genetic Disorders. J. Clin. Med. 2019;9:2. doi: 10.3390/jcm9010002. 10.3390/jcm9010002 PMC7019991 31861268 Li H., Ghazanfari R., Zacharaki D., Ditzel N., Isern J., Ekblom M., Mendez-Ferrer S., Kassem M., Scheding S. Low/negative expression of PDGFR-alpha identifies the candidate primary mesenchymal stromal cells in adult human bone marrow. Stem Cell. Rep. 2014;3:965–974. doi: 10.1016/j.stemcr.2014.09.018. 10.1016/j.stemcr.2014.09.018 PMC4264066 25454633 Raggi C., Berardi A.C. Mesenchymal stem cells, aging and regenerative medicine. Muscles Ligaments Tendons J. 2012;2:239–242. PMC3666525 23738303 Bruna F., Contador D., Conget P., Erranz B., Sossa C.L., Arango-Rodriguez M.L. Regenerative Potential of Mesenchymal Stromal Cells: Age-Related Changes. Stem Cells Int. 2016;2016:1461648. doi: 10.1155/2016/1461648. 10.1155/2016/1461648 PMC4876257 27247575 Bonab M.M., Alimoghaddam K., Talebian F., Ghaffari S.H., Ghavamzadeh A., Nikbin B. Aging of mesenchymal stem cell in vitro. BMC Cell. Biol. 2006;7:14. doi: 10.1186/1471-2121-7-14. 10.1186/1471-2121-7-14 PMC1435883 16529651 Parsch D., Fellenberg J., Brummendorf T.H., Eschlbeck A.M., Richter W. Telomere length and telomerase activity during expansion and differentiation of human mesenchymal stem cells and chondrocytes. J. Mol. Med. 2004;82:49–55. 14647922 Chen Q., Shou P., Zheng C., Jiang M., Cao G., Yang Q., Cao J., Xie N., Velletri T., Zhang X., et al. Fate decision of mesenchymal stem cells: Adipocytes or osteoblasts? Cell. Death Differ. 2016;23:1128–1139. doi: 10.1038/cdd.2015.168. 10.1038/cdd.2015.168 PMC4946886 26868907 Peister A., Mellad J.A., Larson B.L., Hall B.M., Gibson L.F., Prockop D.J. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood. 2004;103:1662–1668. doi: 10.1182/blood-2003-09-3070. 10.1182/blood-2003-09-3070 14592819 Zhu H., Guo Z.K., Jiang X.X., Li H., Wang X.Y., Yao H.Y., Zhang Y., Mao N. A protocol for isolation and culture of mesenchymal stem cells from mouse compact bone. Nat. Protoc. 2010;5:550–560. doi: 10.1038/nprot.2009.238. 10.1038/nprot.2009.238 20203670 Morikawa S., Mabuchi Y., Kubota Y., Nagai Y., Niibe K., Hiratsu E., Suzuki S., Miyauchi-Hara C., Nagoshi N., Sunabori T., et al. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J. Exp. Med. 2009;206:2483–2496. doi: 10.1084/jem.20091046. 10.1084/jem.20091046 PMC2768869 19841085 Houlihan D.D., Mabuchi Y., Morikawa S., Niibe K., Araki D., Suzuki S., Okano H., Matsuzaki Y. Isolation of mouse mesenchymal stem cells on the basis of expression of Sca-1 and PDGFR-alpha. Nat. Protoc. 2012;7:2103–2111. doi: 10.1038/nprot.2012.125. 10.1038/nprot.2012.125 23154782 Hayflick L., Moorhead P.S. The serial cultivation of human diploid cell strains. Exp. Cell. Res. 1961;25:585–621. doi: 10.1016/0014-4827(61)90192-6. 10.1016/0014-4827(61)90192-6 13905658 Calcinotto A., Kohli J., Zagato E., Pellegrini L., Demaria M., Alimonti A. Cellular Senescence: Aging, Cancer, and Injury. Physiol. Rev. 2019;99:1047–1078. doi: 10.1152/physrev.00020.2018. 10.1152/physrev.00020.2018 30648461 Gonzalez-Gualda E., Baker A.G., Fruk L., Munoz-Espin D. A guide to assessing cellular senescence in vitro and in vivo. FEBS J. 2021;288:56–80. doi: 10.1111/febs.15570. 10.1111/febs.15570 32961620 Storer M., Mas A., Robert-Moreno A., Pecoraro M., Ortells M.C., Di Giacomo V., Yosef R., Pilpel N., Krizhanovsky V., Sharpe J., et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell. 2013;155:1119–1130. doi: 10.1016/j.cell.2013.10.041. 10.1016/j.cell.2013.10.041 24238961 Davaapil H., Brockes J.P., Yun M.H. Conserved and novel functions of programmed cellular senescence during vertebrate development. Development. 2017;144:106–114. doi: 10.1242/dev.138222. 10.1242/dev.138222 PMC5278627 27888193 Demaria M., Ohtani N., Youssef S.A., Rodier F., Toussaint W., Mitchell J.R., Laberge R.M., Vijg J., Van Steeg H., Dolle M.E., et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell. 2014;31:722–733. doi: 10.1016/j.devcel.2014.11.012. 10.1016/j.devcel.2014.11.012 PMC4349629 25499914 Kamal N.S.M., Safuan S., Shamsuddin S., Foroozandeh P. Aging of the cells: Insight into cellular senescence and detection Methods. Eur. J. Cell. Biol. 2020;99:151108. doi: 10.1016/j.ejcb.2020.151108. 10.1016/j.ejcb.2020.151108 32800277 Modaresifar K., Hadjizadeh A., Niknejad H. Design and fabrication of GelMA/chitosan nanoparticles composite hydrogel for angiogenic growth factor delivery. Artif. Cells Nanomed. Biotechnol. 2018;46:1799–1808. doi: 10.1080/21691401.2017.1392970. 10.1080/21691401.2017.1392970 29065727 Hadjizadeh A., Doillon C.J. Directional migration of endothelial cells towards angiogenesis using polymer fibres in a 3D co-culture system. J. Tissue Eng. Regen. Med. 2010;4:524–531. doi: 10.1002/term.269. 10.1002/term.269 20872739 Hadjizadeh A., Mohebbi-Kalhori D. Interfacial self-assembly of endothelial cells toward angiogenic network formation in the composite hydrogel culture systems. J. Bioact. Compat. Pol. 2017;32:61–73. doi: 10.1177/0883911516653147. 10.1177/0883911516653147 Moghassemi S., Hadjizadeh A., Hakamivala A., Omidfar K. Growth Factor-Loaded Nano-niosomal Gel Formulation and Characterization. Aaps Pharmscitech. 2017;18:34–41. doi: 10.1208/s12249-016-0579-y. 10.1208/s12249-016-0579-y 27502406 Modaresifar K., Azizian S., Hadjizadeh A. Nano/Biomimetic Tissue Adhesives Development: From Research to Clinical Application. Polym. Rev. 2016;56:329–361. doi: 10.1080/15583724.2015.1114493. 10.1080/15583724.2015.1114493 Xie M., Gao Q., Zhao H., Nie J., Fu Z., Wang H., Chen L., Shao L., Fu J., Chen Z., et al. Electro-Assisted Bioprinting of Low-Concentration GelMA Microdroplets. Small. 2019;15:e1804216. doi: 10.1002/smll.201804216. 10.1002/smll.201804216 30569632 Colosi C., Shin S.R., Manoharan V., Massa S., Costantini M., Barbetta A., Dokmeci M.R., Dentini M., Khademhosseini A. Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low-Viscosity Bioink. Adv. Mater. 2016;28:677–684. doi: 10.1002/adma.201503310. 10.1002/adma.201503310 PMC4804470 26606883 Liu W.J., Heinrich M.A., Zhou Y.X., Akpek A., Hu N., Liu X., Guan X.F., Zhong Z., Jin X.Y., Khademhosseini A., et al. Extrusion Bioprinting of Shear-Thinning Gelatin Methacryloyl Bioinks. Adv. Healthc. Mater. 2017;6:1601451. doi: 10.1002/adhm.201601451. 10.1002/adhm.201601451 PMC5545786 28464555 Yue K., Trujillo-de Santiago G., Alvarez M.M., Tamayol A., Annabi N., Khademhosseini A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254–271. doi: 10.1016/j.biomaterials.2015.08.045. 10.1016/j.biomaterials.2015.08.045 PMC4610009 26414409 Marin-Llera J.C., Lorda-Diez C.I., Hurle J.M., Chimal-Monroy J. SCA-1/Ly6A Mesodermal Skeletal Progenitor Subpopulations Reveal Differential Commitment of Early Limb Bud Cells. Front. Cell. Dev. Biol. 2021;9:656999. doi: 10.3389/fcell.2021.656999. 10.3389/fcell.2021.656999 PMC8322737 34336823 Zhang P., Dong J., Fan X., Yong J., Yang M., Liu Y., Zhang X., Lv L., Wen L., Qiao J., et al. Characterization of mesenchymal stem cells in human fetal bone marrow by single-cell transcriptomic and functional analysis. Signal. Transduct. Target. Ther. 2023;8:126. doi: 10.1038/s41392-023-01338-2. 10.1038/s41392-023-01338-2 PMC10063684 36997513 Morison I.M., Reeve A.E. A catalogue of imprinted genes and parent-of-origin effects in humans and animals. Hum. Mol. Genet. 1998;7:1599–1609. doi: 10.1093/hmg/7.10.1599. 10.1093/hmg/7.10.1599 9735381 Kim J., Lu X., Stubbs L. Zim1, a maternally expressed mouse Kruppel-type zinc-finger gene located in proximal chromosome 7. Hum. Mol. Genet. 1999;8:847–854. doi: 10.1093/hmg/8.5.847. 10.1093/hmg/8.5.847 10196374 Kuroiwa Y., Kaneko-Ishino T., Kagitani F., Kohda T., Li L.L., Tada M., Suzuki R., Yokoyama M., Shiroishi T., Wakana S., et al. Peg3 imprinted gene on proximal chromosome 7 encodes for a zinc finger protein. Nat. Genet. 1996;12:186–190. doi: 10.1038/ng0296-186. 10.1038/ng0296-186 8563758 Kirschner K., Rattanavirotkul N., Quince M.F., Chandra T. Functional heterogeneity in senescence. Biochem. Soc. Trans. 2020;48:765–773. doi: 10.1042/BST20190109. 10.1042/BST20190109 PMC7329341 32369550 Tuttle C.S.L., Waaijer M.E.C., Slee-Valentijn M.S., Stijnen T., Westendorp R., Maier A.B. Cellular senescence and chronological age in various human tissues: A systematic review and meta-analysis. Aging Cell. 2020;19:e13083. doi: 10.1111/acel.13083. 10.1111/acel.13083 PMC6996941 31808308 Beausejour C.M., Krtolica A., Galimi F., Narita M., Lowe S.W., Yaswen P., Campisi J. Reversal of human cellular senescence: Roles of the p53 and p16 pathways. EMBO J. 2003;22:4212–4222. doi: 10.1093/emboj/cdg417. 10.1093/emboj/cdg417 PMC175806 12912919 Victorelli S., Passos J.F. Reactive Oxygen Species Detection in Senescent Cells. Methods Mol. Biol. 2019;1896:21–29. 30474836 Zhang B., Fu D., Xu Q., Cong X., Wu C., Zhong X., Ma Y., Lv Z., Chen F., Han L., et al. The senescence-associated secretory phenotype is potentiated by feedforward regulatory mechanisms involving Zscan4 and TAK1. Nat. Commun. 2018;9:1723. doi: 10.1038/s41467-018-04010-4. 10.1038/s41467-018-04010-4 PMC5928226 29712904 Takikawa S., Ray C., Wang X., Shamis Y., Wu T.Y., Li X. Genomic imprinting is variably lost during reprogramming of mouse iPS cells. Stem Cell. Res. 2013;11:861–873. doi: 10.1016/j.scr.2013.05.011. 10.1016/j.scr.2013.05.011 PMC3815550 23832110 Cattanach B.M., Beechey C.V., Peters J. Interactions between imprinting effects in the mouse. Genetics. 2004;168:397–413. doi: 10.1534/genetics.104.030064. 10.1534/genetics.104.030064 PMC1448095 15454552 Wang H.X., Li T.Y., Kidder G.M. WNT2 regulates DNA synthesis in mouse granulosa cells through beta-catenin. Biol. Reprod. 2010;82:865–875. doi: 10.1095/biolreprod.109.080903. 10.1095/biolreprod.109.080903 PMC3025002 20107203 Schlessinger K., Hall A., Tolwinski N. Wnt signaling pathways meet Rho GTPases. Genes. Dev. 2009;23:265–277. doi: 10.1101/gad.1760809. 10.1101/gad.1760809 19204114 Shen L., Zhou S., Glowacki J. Effects of age and gender on WNT gene expression in human bone marrow stromal cells. J. Cell. Biochem. 2009;106:337–343. doi: 10.1002/jcb.22010. 10.1002/jcb.22010 PMC4452949 19115259 Ye X., Zerlanko B., Kennedy A., Banumathy G., Zhang R., Adams P.D. Downregulation of Wnt signaling is a trigger for formation of facultative heterochromatin and onset of cell senescence in primary human cells. Mol. Cell. 2007;27:183–196. doi: 10.1016/j.molcel.2007.05.034. 10.1016/j.molcel.2007.05.034 PMC2698096 17643369 Shi X., Tian B., Ma C., Liu L., Zhang N., Na Y., Li J., Lu J., Qiao Y. GSK3beta activity is essential for senescence-associated heterochromatin foci (SAHF) formation induced by HMGA2 in WI38 cells. Am. J. Transl. Res. 2017;9:167–174. PMC5250713 28123643 Feng Y., Wu L. Knockdown of eukaryotic translation initiation factor 3 subunit B inhibits cell proliferation and migration and promotes apoptosis by downregulating WNT signaling pathway in acute myeloid leukemia. Int. J. Clin. Exp. Pathol. 2020;13:99–106. PMC7013369 32055278 Bhavanasi D., Klein P.S. Wnt Signaling in Normal and Malignant Stem Cells. Curr. Stem Cell. Rep. 2016;2:379–387. doi: 10.1007/s40778-016-0068-y. 10.1007/s40778-016-0068-y PMC5423672 28503404 Zhao H., Chen Y., Shao L., Xie M., Nie J., Qiu J., Zhao P., Ramezani H., Fu J., Ouyang H., et al. Airflow-Assisted 3D Bioprinting of Human Heterogeneous Microspheroidal Organoids with Microfluidic Nozzle. Small. 2018;14:e1802630. doi: 10.1002/smll.201802630. 10.1002/smll.201802630 30133151 Ahadian S., Khademhosseini A. A Perspective on 3D Bioprinting in Tissue Regeneration. Biodes Manuf. 2018;1:157–160. doi: 10.1007/s42242-018-0020-3. 10.1007/s42242-018-0020-3 PMC6426323 30906618 Shao L., Gao Q., Zhao H., Xie C., Fu J., Liu Z., Xiang M., He Y. Fiber-Based Mini Tissue with Morphology-Controllable GelMA Microfibers. Small. 2018;14:e1802187. doi: 10.1002/smll.201802187. 10.1002/smll.201802187 30253060 Gresham R.C.H., Kumar D., Copp J., Lee M.A., Leach J.K. Characterization of Induction and Targeting of Senescent Mesenchymal Stromal Cells. Tissue Eng. Part. C Methods. 2022;28:239–249. doi: 10.1089/ten.tec.2022.0048. 10.1089/ten.tec.2022.0048 PMC9247679 35438548 Zhou X., Tenaglio S., Esworthy T., Hann S.Y., Cui H., Webster T.J., Fenniri H., Zhang L.G. Three-Dimensional Printing Biologically Inspired DNA-Based Gradient Scaffolds for Cartilage Tissue Regeneration. ACS Appl. Mater. Interfaces. 2020;12:33219–33228. doi: 10.1021/acsami.0c07918. 10.1021/acsami.0c07918 32603082 O’Callaghan N.J., Fenech M. A quantitative PCR method for measuring absolute telomere length. Biol. Proced. Online. 2011;13:3. doi: 10.1186/1480-9222-13-3. 10.1186/1480-9222-13-3 PMC3047434 21369534 Szklarczyk D., Gable A.L., Nastou K.C., Lyon D., Kirsch R., Pyysalo S., Doncheva N.T., Legeay M., Fang T., Bork P., et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49:D605–D612. doi: 10.1093/nar/gkaa1074. 10.1093/nar/gkaa1074 PMC7779004 33237311 32865337 2022 01 31 2022 01 31 1552-4981 109 4 2021 Apr Journal of biomedical materials research. Part B, Applied biomaterials J Biomed Mater Res B Appl Biomater Evaluation of osteogenic and antibacterial properties of strontium/silver-containing porous TiO2 coatings prepared by micro-arc oxidation. 505 516 505-516 10.1002/jbm.b.34719 Ti and Ti alloys are bioinert materials and two frequent problems associated with them are bacterial infection and lack of osteogenic potential for rapid bone integration. To overcome the problems, the present study incorporated strontium (Sr) and silver (Ag) simultaneously into porous TiO2 coatings through a single-step technique, micro-arc oxidation (MAO). Incorporation of Sr and Ag brought no significant changes to coating micromorphology and physicochemical properties, but endowed TiO2 coatings with both strong antibacterial activity and osteogenic ability. Antibacterial activity increased with Ag contents in the coatings. When Ag content reached 0.58 wt%, the coating showed both excellent short-term (100.0%) and long-term (77.6%) antibacterial activities. Sr/Ag-containing coatings with 18.23 wt% Sr and 0.58 wt% Ag also presented good cytocompatibility for preosteoblast adhesion and proliferation, and promoted preosteoblast osteogenic differentiation both short-termly and long-termly. However, higher Ag content (1.29 wt%) showed toxic effects to preosteoblasts. In summary, MAO is a simple and effective way to incorporate Sr and Ag into porous TiO2 coatings and Sr/Ag-containing TiO2 coating with 18.5 wt% Sr and 0.58 wt% Ag has both good osteogenic activity and strong antibacterial capability short-termly and long-termly. Therefore, such coatings are valuable for clinical application to strengthen osseointegration and long-term high quality use of titanum implants. © 2020 Wiley Periodicals LLC. Zhang Yang-Yang YY Department of Oral and Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan, Hebei, China. Zhu Ye Y Department of Oral and Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan, Hebei, China. Lu Da-Zhuang DZ Department of Oral and Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan, Hebei, China. Dong Wei W Department of Oral and Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan, Hebei, China. Bi Wen-Juan WJ Department of Oral and Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan, Hebei, China. Feng Xiao-Jie XJ Department of Oral and Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan, Hebei, China. Wen Li-Ming LM Department of Oral and Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan, Hebei, China. Sun Hong H Department of Pathology, college of basic medicine, North China University of Science and Technology, Tangshan, Hebei, China. Qi Meng-Chun MC 0000-0001-5681-5282 Department of Oral and Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan, Hebei, China. eng Journal Article Research Support, Non-U.S. Gov't 2020 08 31 United States J Biomed Mater Res B Appl Biomater 101234238 1552-4973 0 Anti-Bacterial Agents 0 Coated Materials, Biocompatible 15FIX9V2JP titanium dioxide 3M4G523W1G Silver D1JT611TNE Titanium YZS2RPE8LE Strontium IM Anti-Bacterial Agents pharmacology Cell Adhesion drug effects Cell Division drug effects Cell Line Chemical Phenomena Coated Materials, Biocompatible pharmacology Humans Hydrophobic and Hydrophilic Interactions Microbial Sensitivity Tests Osteoblasts drug effects ultrastructure Osteogenesis drug effects Oxidation-Reduction Porosity Silver pharmacology Staphylococcus aureus drug effects Strontium pharmacology Surface Properties Titanium pharmacology X-Ray Diffraction antibacterial property micro-arc oxidation osteogenic ability silver stronium 2020 2 18 2020 8 11 2020 8 18 2020 9 1 6 0 2022 2 1 6 0 2020 9 1 6 0 ppublish 32865337 10.1002/jbm.b.34719 REFERENCES Li YH, Yang C, Zhao H, Qu S, Li X, Li Y. New developments of Ti-based alloys for biomedical applications. Materials. 2014;7(3):1709-1800. Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater. 2008;1(1):30-42. Fielding GA, Roy M, Bandyopadhyay A, Bose S. Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings. Acta Biomater. 2012;8(8):3144-3152. He X, Zhang X, Bai L, et al. Antibacterial ability and osteogenic activity of porous Sr/ag-containing TiO2 coatings. Biomed Mater. 2016;11(4):45008. Campoccia D, Montanaro L, Arciola CR. The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials. 2006;27(11):2331-2339. Ferraris S, Spriano SM. Antibacterial titanium surfaces for medical implants. Mater Sci Eng C. 2016;61:965-978. Madi M, Htet M, Zakaria O, Alagl AS, Kasugai S. Re-osseointegration of dental implants after Periimplantitis treatments: a systematic review. Implant Dent. 2018;27(1):101-110. Kim DY, Kim M, Kim H, Koh Y, Kim H, Jang J. Formation of hydroxyapatite within porous TiO2 layer by micro-arc oxidation coupled with electrophoretic deposition. Acta Biomater. 2009;5(6):2196-2205. Li Y, Li Q, Zhu S, et al. The effect of strontium-substituted hydroxyapatite coating on implant fixation in ovariectomized rats. Biomaterials. 2010;31(34):9006-9014. Zhou R, Wei D, Cheng S, et al. Structure, MC3T3-E1 cell response, and osseointegration of macroporous titanium implants covered by a bioactive microarc oxidation coating with microporous structure. ACS Appl Mater Interfaces. 2014;6(7):4797-4811. Zhang E, Wang X, Chen M, Hou B. Effect of the existing form of cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti-cu alloys for biomedical application. Mater Sci Eng C. 2016;69:1210-1221. Hu H, Zhang W, Qiao Y, Jiang X, Liu X, Ding C. Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomater. 2012;8(2):904-915. Jonathan B, Christopher N, Ulrich S, Robert P, La RRM, Shafer WM. Antimicrobial activity of carbon monoxide-releasing molecule [Mn(CO)3(tpa-κ3N)]Br versus multidrug-resistant isolates of avian pathogenic Escherichia coli and its synergy with colistin. Plos One. 2017;12(10):e0186359. Zhang X, Wu H, Geng Z, et al. Microstructure and cytotoxicity evaluation of duplex-treated silver-containing antibacterial TiO2 coatings. Mater Ence Eng C. 2014;45:402-410. Nguyen TT, Jang Y, Lee M, Bae T. Effect of strontium doping on the biocompatibility of calcium phosphate-coated titanium substrates. J Appl Biomater Functional Mater. 2019;17(1):2280800019826517. Zhao L, Wang H, Huo K, et al. The osteogenic activity of strontium loaded titania nanotube arrays on titanium substrates. Biomaterials. 2013;34(1):19-29. Chen M, Yang L, Zhang L, et al. Effect of nano/micro-ag compound particles on the bio-corrosion, antibacterial properties and cell biocompatibility of Ti-ag alloys. Mater Ence Eng C Mater Biol Appl. 2017;75:906-917. Forster H, Marotta JS, Heseltine K, Milner R, Jani SC. Bactericidal activity of antimicrobial coated polyurethane sleeves for external fixation pins. J Orthop Res. 2004;22(3):671-677. Zhang Q, Wang Y, Zhang W, et al. In situ assembly of well-dispersed ag nanoparticles on the surface of polylactic acid-au@polydopamine nanofibers for antimicrobial applications. Colloids Surf B Biointerfaces. 2019;184:110506. Yu SB, Kim HJ, Kang HM, Park BS, Lee JH, Kim IR. Cordycepin accelerates osteoblast mineralization and attenuates osteoclast differentiation in vitro. Evid Based Complement Alternat Med. 2018;2018:1-10. Zhang BB, Wang BL, Li L, Zheng YF. Corrosion behavior of Ti-5Ag alloy with and without thermal oxidation in artificial saliva solution. Dental Mater Official Pub Academy Dental Mater. 2011;27(3):214-220. Huang CH, Yoshimura M. Direct ceramic coating of calcium phosphate doped with strontium via reactive growing integration layer method on α-Ti alloy. Entific Reports. 2020;10(1):10602. Feng QL, Wu J, Chen G, Cui F, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;52(4):662-668. Compton SM, Clark D, Chan S, Kuc I, Wubie B, Levin L. Dental implants in the elderly population: a long-term follow-up. Int J Oral Maxillofacial Implants. 2017;32(1):164-170. Darouiche RO. Anti-infective efficacy of silver-coated medical prostheses. Clin Infect Dis. 1999;29(6):1371-1377. Jordana F, Susbielles L, Colatparros J. Periimplantitis and implant body roughness: a systematic review of literature. Implant Dent. 2018;27(6):672-681. Setzer FC, Kim S. Comparison of long-term survival of implants and Endodontically treated teeth. J Dent Res. 2014;93(1):19-26. Agnihotri S, Mukherji S, Mukherji S. Immobilized silver nanoparticles enhance contact killing and show highest efficacy: elucidation of the mechanism of bactericidal action of silver. Nanoscale. 2013;5(16):7328-7340. Cho KH, Park JE, Osaka T, Park SG. The study of antimicrobial activity and preservative effects of nanosilver ingredigent. Electrochim Acta. 2005;51(5):956-960. Madi M, Zakaria O, Ichinose S, Kasugai S. Effect of induced Periimplantitis on dental implants with and without ultrathin hydroxyapatite coating. Implant Dent. 2016;25(1):39-46. Uhm S, Kwon J, Song D, et al. Long-term antibacterial performance and bioactivity of plasma-engineered ag-NPs/TiO₂. J Biomed Nanotechnol. 2016;12(10):1890-1906. Li F, Jiang X, Shao Z, Zhu D, Luo Z. Microstructure and mechanical properties of Nano-carbon reinforced titanium matrix/hydroxyapatite biocomposites prepared by spark plasma sintering. Nanomaterials. 2018;8(9):729. Liaw K, Delfini RH, Abrahams JJ. Dental implant complications. Seminars Ultrasound Ct Mri. 2015;36(5):427-433. Renvert S, Polyzois I, Maguire R. Re-osseointegration on previously contaminated surfaces: a systematic review. Clin Oral Implants Res. 2009;20:216-227. Peng S, Liu XS, Huang S, et al. The cross-talk between osteoclasts and osteoblasts in response to strontium treatment: involvement of osteoprotegerin. Bone. 2011;49(6):1290-1298. Offermanns V, Andersen OZ, Riede G, et al. Effect of strontium surface-functionalized implants on early and late osseointegration: a histological. Spectrometric Tomographic Evaluation Acta Biomaterialia. 2018;69:385-394. 32618100 2021 11 08 2021 11 08 1552-4981 108 8 2020 Nov Journal of biomedical materials research. Part B, Applied biomaterials J Biomed Mater Res B Appl Biomater Effectiveness of strontium-doped brushite, bovine-derived hydroxyapatite and synthetic hydroxyapatite in rabbit sinus augmentation with simultaneous implant installation. 3402 3412 3402-3412 10.1002/jbm.b.34675 Various bone substitutes have been applied in sinus augmentation (SA) to overcome insufficient bone height at the posterior maxilla region caused by pneumatized sinus and severe alveolar bone resorption after teeth loss. However, their effectiveness in SA needs to be further elucidated. In this study, strontium-doped brushite (Sr-DCPD), a new bone substitute, together with bovine-derived hydroxyapatite (bHA) and synthetic hydroxyapatite (sHA) was used in rabbit maxillary SA with simultaneous implant installation. The sinus space-keeping capacity, resorption rate, osteoconductivity, and mechanical properties of regenerated bone, were evaluated by micro-computed tomography (CT), histological analysis, and mechanical testing. Sr-DCPD exhibited the best osteoconductivity and new bone formation (<4 weeks), but its final bone regeneration and removal torque of implants at week 12 were the lowest, mainly due to its poor space-keeping capacity and fast resorption. bHA exhibited the best space-keeping capacity and slowest resorption rate, but relative lower final bone volume and mechanical properties, while sHA showed good space-keeping capacity, slower resorption rate, and the best final bone formation and mechanical properties. sHA was most effective for SA and bHA was also an acceptable bone substitute; however, Sr-DCPD was least effective and not suitable in SA by itself. © 2020 Wiley Periodicals LLC. Lu Da-Zhuang DZ Department of Oral & Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan City, Hebei Province, China. Zhang Yan-Bo YB Department of stomatology, Affiliated hospital of Chengde Medical College, Chengde City, Hebei Province, China. Dong Wei W Department of Oral & Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan City, Hebei Province, China. Bi Wen-Juan WJ Department of Oral & Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan City, Hebei Province, China. Feng Xiao-Jie XJ Department of Oral & Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan City, Hebei Province, China. Wen Li-Ming LM Department of Oral & Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan City, Hebei Province, China. Sun Hong H Department of pathology, college of basic medicine, North China University of Science and Technology, Tangshan City, Hebei Province, China. Chen Hui H Department of Oral & Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan City, Hebei Province, China. Zang Lu-Yang LY Department of Endocrinology (Section 1), Tangshan Gongren Hospital, Tangshan City, Hebei Province, China. Qi Meng-Chun MC 0000-0001-5681-5282 Department of Oral & Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan City, Hebei Province, China. eng Journal Article Research Support, Non-U.S. Gov't 2020 07 03 United States J Biomed Mater Res B Appl Biomater 101234238 1552-4973 0 Biocompatible Materials 0 Bone Substitutes 0 Calcium Phosphates 91D9GV0Z28 Durapatite O7TSZ97GEP calcium phosphate, dibasic, dihydrate YZS2RPE8LE Strontium IM Animals Biocompatible Materials Bone Conduction Bone Regeneration drug effects Bone Resorption Bone Substitutes chemistry Calcium Phosphates chemistry pharmacology Cattle Durapatite chemistry pharmacology Humans Male Maxillary Sinus surgery Mechanical Phenomena Middle Aged Osteogenesis drug effects Prostheses and Implants Rabbits Sinus Floor Augmentation methods Strontium chemistry pharmacology X-Ray Microtomography bovine-derived hydroxyapatite dental implants sinus augmentation strontium-doped brushite synthetic hydroxyapatite 2020 2 13 2020 6 5 2020 6 9 2020 7 4 6 0 2021 11 9 6 0 2020 7 4 6 0 ppublish 32618100 10.1002/jbm.b.34675 REFERENCES Baier, M., Staudt, P., Klein, R., Sommer, U., Wenz, R., Grafe, I., … Kasperk, C. (2013). Strontium enhances osseointegration of calcium phosphate cement: A histomorphometric pilot study in ovariectomized rats. Journal of Orthopaedic Surgery and Research, 8, 16. Browaeys, H., Bouvry, P., & De Bruyn, H. (2007). A literature review on biomaterials in sinus augmentation procedures. Clinical Implant Dentistry and Related Research, 9, 166-177. Carvalho, C. M., Carvalho, L. F., Costa, L. J., Sa, M. J., Figueiredo, C. R., & Azevedo, A. S. (2010). Titanium implants: A removal torque study in osteopenic rabbits. Indian Journal of Dental Research, 21, 349-352. Caverzasio, J., & Thouverey, C. (2011). Activation of FGF receptors is a new mechanism by which strontium ranelate induces osteoblastic cell growth. Cellular Physiology and Biochemistry, 27, 243-250. Chaves, M. D., de Souza Nunes, L. S., de Oliveira, R. V., Holgado, L. A., Filho, H. N., Matsumoto, M. A., & Ribeiro, D. A. (2012). Bovine hydroxyapatite bio-Oss(®) induces osteocalcin, RANK-L and osteoprotegerin expression in sinus lift of rabbits. Journal of Cranio-Maxillo-Facial Surgery, 40, e315-e320. Choi, Y., Yun, J. H., Kim, C. S., Choi, S. H., Chai, J. K., & Jung, U. W. (2012). Sinus augmentation using absorbable collagen sponge loaded with Escherichia coli-expressed recombinant human bone morphogenetic protein 2 in a standardized rabbit sinus model: A radiographic and histologic analysis. Clinical Oral Implants Research, 23, 682-689. Cordaro, L., Bosshardt, D. D., Palattella, P., Rao, W., Serino, G., & Chiapasco, M. (2008). Maxillary sinus grafting with bio-Oss or Straumann bone ceramic: Histomorphometric results from a randomized controlled multicenter clinical trial. Clinical Oral Implants Research, 19, 796-803. De Santis, E., Lang, N. P., Ferreira, S., Rangel Garcia, I., Jr., Caneva, M., & Botticelli, D. (2017). Healing at implants installed concurrently to maxillary sinus floor elevation with bio-Oss(R) or autologous bone grafts. A histo-morphometric study in rabbits. Clinical Oral Implants Research, 28, 503-511. Esposito, M., Felice, P., & Worthington, H. V. (2014). Interventions for replacing missing teeth: Augmentation procedures of the maxillary sinus. Cochrane Database of Systematic Reviews, 13(5), CD008397. Habibovic, P., & de Groot, K. (2007). Osteoinductive biomaterials-properties and relevance in bone repair. Journal of Tissue Engineering and Regenerative Medicine, 1, 25-32. Ince, A., Schutze, N., Hendrich, C., Thull, R., Eulert, J., & Lohr, J. F. (2008). In vitro investigation of orthopedic titanium-coated and brushite-coated surfaces using human osteoblasts in the presence of gentamycin. The Journal of Arthroplasty, 23, 762-771. Kim, H. R., Choi, B. H., Xuan, F., & Jeong, S. M. (2010). The use of autologous venous blood for maxillary sinus floor augmentation in conjunction with sinus membrane elevation: An experimental study. Clinical Oral Implants Research, 21, 346-349. Kim, M. S., Kwon, J. Y., Lee, J. S., Song, J. S., Choi, S. H., & Jung, U. W. (2014). Low-dose recombinant human bone morphogenetic protein-2 to enhance the osteogenic potential of the Schneiderian membrane in the early healing phase: in vitro and in vivo studies. Journal of Oral and Maxillofacial Surgery, 72, 1480-1494. Kim, S. W., Lee, I. K., Yun, K. I., Kim, C. H., & Park, J. U. (2009). Adult stem cells derived from human maxillary sinus membrane and their osteogenic differentiation. The International Journal of Oral & Maxillofacial Implants, 24, 991-998. Kim, Y. S., Kim, S. H., Kim, K. H., Jhin, M. J., Kim, W. K., Lee, Y. K., … Lee, Y. M. (2012). Rabbit maxillary sinus augmentation model with simultaneous implant placement: Differential responses to the graft materials. Journal of Periodontal and Implant Science, 42, 204-211. Lambert, F., Bacevic, M., Layrolle, P., Schupbach, P., Drion, P., & Rompen, E. (2017). Impact of biomaterial microtopography on bone regeneration: Comparison of three hydroxyapatites. Clinical Oral Implants Research, 28, e201-e207. Lambert, F., Leonard, A., Drion, P., Sourice, S., Layrolle, P., & Rompen, E. (2011). Influence of space-filling materials in subantral bone augmentation: Blood clot vs. autogenous bone chips vs. bovine hydroxyapatite. Clinical Oral Implants Research, 22, 538-545. Lambert, F., Leonard, A., Lecloux, G., Sourice, S., Pilet, P., & Rompen, E. (2013). A comparison of three calcium phosphate-based space fillers in sinus elevation: A study in rabbits. The International Journal of Oral & Maxillofacial Implants, 28, 393-402. LeGeros, R. Z. (2008). Calcium phosphate-based osteoinductive materials. Chemical Reviews, 108, 4742-4753. Liang, Y., Li, H., Xu, J., Li, X., Qi, M., & Hu, M. (2014). Morphology, composition, and bioactivity of strontium-doped brushite coatings deposited on titanium implants via electrochemical deposition. International Journal of Molecular Sciences, 15, 9952-9962. Lim, H. C., Hong, J. Y., Lee, J. S., Jung, U. W., & Choi, S. H. (2016). Late-term healing in an augmented sinus with different ratios of biphasic calcium phosphate: A pilot study using a rabbit sinus model. Journal of Periodontal and Implant Science, 46, 57-69. Lim, H. C., Zhang, M. L., Lee, J. S., Jung, U. W., & Choi, S. H. (2015). Effect of different hydroxyapatite:Beta-tricalcium phosphate ratios on the osteoconductivity of biphasic calcium phosphate in the rabbit sinus model. The International Journal of Oral & Maxillofacial Implants, 30, 65-72. Narayanan, R., Seshadri, S. K., Kwon, T. Y., & Kim, K. H. (2008). Calcium phosphate-based coatings on titanium and its alloys. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 85, 279-299. Ni, G. X., Shu, B., Huang, G., Lu, W. W., & Pan, H. B. (2012). The effect of strontium incorporation into hydroxyapatites on their physical and biological properties. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 100, 562-568. Norton, M. R., Odell, E. W., Thompson, I. D., & Cook, R. J. (2003). Efficacy of bovine bone mineral for alveolar augmentation: A human histologic study. Clinical Oral Implants Research, 14, 775-783. Ohura, K., Bohner, M., Hardouin, P., Lemaitre, J., Pasquier, G., & Flautre, B. (1996). Resorption of, and bone formation from, new beta-tricalcium phosphate-monocalcium phosphate cements: An in vivo study. Journal of Biomedical Materials Research, 30, 193-200. Orsini, G., Traini, T., Scarano, A., Degidi, M., Perrotti, V., Piccirilli, M., & Piattelli, A. (2005). Maxillary sinus augmentation with bio-Oss particles: A light, scanning, and transmission electron microscopy study in man. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 74, 448-457. Owen, G. R., Dard, M., & Larjava, H. (2018). Hydoxyapatite/beta-tricalcium phosphate biphasic ceramics as regenerative material for the repair of complex bone defects. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 106, 2493-2512. Raja, S. V. (2009). Management of the posterior maxilla with sinus lift: Review of techniques. Journal of Oral and Maxillofacial Surgery, 67, 1730-1734. Rouahi, M., Champion, E., Gallet, O., Jada, A., & Anselme, K. (2006). Physico-chemical characteristics and protein adsorption potential of hydroxyapatite particles: Influence on in vitro biocompatibility of ceramics after sintering. Colloids and Surfaces. B, Biointerfaces, 47, 10-19. Rouahi, M., Gallet, O., Champion, E., Dentzer, J., Hardouin, P., & Anselme, K. (2006). Influence of hydroxyapatite microstructure on human bone cell response. Journal of Biomedical Materials Research. Part A, 78, 222-235. Sbordone, L., Toti, P., Menchini-Fabris, G. B., Sbordone, C., Piombino, P., & Guidetti, F. (2009). Volume changes of autogenous bone grafts after alveolar ridge augmentation of atrophic maxillae and mandibles. International Journal of Oral and Maxillofacial Surgery, 38, 1059-1065. Sheikh, Z., Abdallah, M. N., Hanafi, A. A., Misbahuddin, S., Rashid, H., & Glogauer, M. (2015). Mechanisms of in vivo degradation and resorption of calcium phosphate based biomaterials. Materials (Basel), 8, 7913-7925. Srouji, S., Kizhner, T., Ben David, D., Riminucci, M., Bianco, P., & Livne, E. (2009). The Schneiderian membrane contains osteoprogenitor cells: in vivo and in vitro study. Calcified Tissue International, 84, 138-145. Tadier, S., Bareille, R., Siadous, R., Marsan, O., Charvillat, C., Cazalbou, S., … Combes, C. (2012). Strontium-loaded mineral bone cements as sustained release systems: Compositions, release properties, and effects on human osteoprogenitor cells. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 100, 378-390. Tadjoedin, E. S., de Lange, G. L., Bronckers, A. L., Lyaruu, D. M., & Burger, E. H. (2003). Deproteinized cancellous bovine bone (bio-Oss) as bone substitute for sinus floor elevation. A retrospective, histomorphometrical study of five cases. Journal of Clinical Periodontology, 30, 261-270. Tosta, M., Cortes, A. R., Corrêa, L., Pinto Ddos, S., Jr., Tumenas, I., & Katchburian, E. (2013). Histologic and histomorphometric evaluation of a synthetic bone substitute for maxillary sinus grafting in humans. Clinical Oral Implants Research, 24, 866-870. Trbakovic, A., Hedenqvist, P., Mellgren, T., Ley, C., Hilborn, J., Ossipov, D., … Thor, A. (2018). A new synthetic granular calcium phosphate compound induces new bone in a sinus lift rabbit model. Journal of Dentistry, 70, 31-39. Valiense, H., Barreto, M., Resende, R. F., Alves, A. T., Rossi, A. M., Mavropoulos, E., … Calasans Maia, M. D. (2016). In vitro and in vivo evaluation of strontium-containing nanostructured carbonated hydroxyapatite/sodium alginate for sinus lift in rabbits. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 104, 274-282. Wallace, S. S., & Froum, S. J. (2003). Effect of maxillary sinus augmentation on the survival of endosseous dental implants. A systematic review. Annals of Periodontology, 8, 328-343. Wanschitz, F., Figl, M., Wagner, A., & Rolf, E. (2006). Measurement of volume changes after sinus floor augmentation with a phycogenic hydroxyapatite. The International Journal of Oral & Maxillofacial Implants, 21, 433-438. Xia, L., Xu, Y., Wei, J., Zeng, D., Ye, D., Liu, C., … Jiang, X. (2011). Maxillary sinus floor elevation using a tissue-engineered bone with rhBMP-2-loaded porous calcium phosphate cement scaffold and bone marrow stromal cells in rabbits. Cells, Tissues, Organs, 194, 481-493. Yildirim, M., Spiekermann, H., Biesterfeld, S., & Edelhoff, D. (2000). Maxillary sinus augmentation using xenogenic bone substitute material bio-Oss in combination with venous blood. A histologic and histomorphometric study in humans. Clinical Oral Implants Research, 11, 217-229. 32173349 2021 05 27 2021 05 27 1872-8057 508 2020 May 15 Molecular and cellular endocrinology Mol Cell Endocrinol CaMKII(δ) regulates osteoclastogenesis through ERK, JNK, and p38 MAPKs and CREB signalling pathway. 110791 110791 10.1016/j.mce.2020.110791 S0303-7207(20)30091-5 Calcium/calmodulin-dependent protein kinases (CaMKs) are a group of important molecules mediating calcium signal transmission and have been proved to participate in osteoclastogenesis regulation. CaMKII, a subtype of CaMKs is expressed during osteoclast differentiation, but its role in osteoclastogenesis regulation remains controversial. In the present study, we identified that both mRNA and protein levels of CaMKII (δ) were upregulated in a time-dependent manner during osteoclast differentiation. CaMKII (δ) gene silencing significantly inhibited osteoclast formation, bone resorption, and expression of osteoclast-related genes, including nuclear factor of activated T cells c1 (NFATc1), tartrate-resistant acid phosphatase (TRAP), and c-Src. Furthermore, CaMKII (δ) gene silencing downregulated phosphorylation of mitogen-activated protein kinases (MAPKs), including JNK, ERK, and p38, which were transiently activated by RANKL. Specific inhibitors of ERK, JNK, and p38 also markedly inhibited expression of osteoclast-related genes, osteoclast formation, and bone resorption like CaMKII (δ) gene silencing. Additionally, CaMKII (δ) gene silencing also suppressed RANKL-triggered CREB phosphorylation. Collectively, these data demonstrate the important role of CaMKII (δ) in osteoclastogenesis regulation through JNK, ERK, and p38 MAPKs and CREB pathway. Copyright © 2020 Elsevier B.V. All rights reserved. Lu Da-Zhuang DZ Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, 21, Bohai Road, District of Caofeidian, Tangshan City, 063210, Hebei Province, PR China. Dong Wei W Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, 21, Bohai Road, District of Caofeidian, Tangshan City, 063210, Hebei Province, PR China. Feng Xiao-Jie XJ Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, 21, Bohai Road, District of Caofeidian, Tangshan City, 063210, Hebei Province, PR China. Chen Hui H Department of Oral & Maxillofacial Surgery, Affiliated Hospital of North China University of Science and Technology, Tangshan City, 063000, Hebei Province, PR China. Liu Juan-Juan JJ Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, 21, Bohai Road, District of Caofeidian, Tangshan City, 063210, Hebei Province, PR China. Wang Hui H Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, 21, Bohai Road, District of Caofeidian, Tangshan City, 063210, Hebei Province, PR China. Zang Lu-Yang LY Department of Endocrinology (Section 1), Tangshan Gongren Hospital, Tangshan City, 063000, Hebei Province, PR China. Qi Meng-Chun MC Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, 21, Bohai Road, District of Caofeidian, Tangshan City, 063210, Hebei Province, PR China. Electronic address: qimengchun@163.com. eng Journal Article Research Support, Non-U.S. Gov't 2020 03 12 Ireland Mol Cell Endocrinol 7500844 0303-7207 0 Cyclic AMP Response Element-Binding Protein 0 Protein Kinase Inhibitors 0 RANK Ligand EC 2.7.11.17 Calcium-Calmodulin-Dependent Protein Kinase Type 2 EC 2.7.11.24 Extracellular Signal-Regulated MAP Kinases EC 2.7.11.24 JNK Mitogen-Activated Protein Kinases EC 2.7.11.24 p38 Mitogen-Activated Protein Kinases EC 3.1.3.2 Tartrate-Resistant Acid Phosphatase IM Animals Bone Resorption genetics pathology Calcium-Calmodulin-Dependent Protein Kinase Type 2 metabolism Cell Differentiation drug effects Cyclic AMP Response Element-Binding Protein metabolism Down-Regulation drug effects genetics Extracellular Signal-Regulated MAP Kinases metabolism Gene Silencing drug effects JNK Mitogen-Activated Protein Kinases metabolism Mice Osteoclasts cytology drug effects metabolism Osteogenesis drug effects Phosphorylation drug effects Protein Kinase Inhibitors pharmacology RANK Ligand pharmacology RAW 264.7 Cells Signal Transduction drug effects Tartrate-Resistant Acid Phosphatase metabolism Time Factors p38 Mitogen-Activated Protein Kinases metabolism Calcium/calmodulin-dependent protein kinases Extracellular signal-regulated kinases Osteoclast c-Jun amino-terminal kinases cAMP response element binding protein p38 Declaration of competing interest The authors declare no conflicts of interest related to this study. 2019 9 9 2020 1 2 2020 3 10 2020 3 17 6 0 2021 5 28 6 0 2020 3 17 6 0 ppublish 32173349 10.1016/j.mce.2020.110791 S0303-7207(20)30091-5 trying2...
Publications by Dazhuang Lu | LitMetric
Publications by authors named "Dazhuang Lu"
The periosteum plays a critical role in bone repair and is significantly influenced by the surrounding immune microenvironment. In this study, we employed 10× single-cell RNA sequencing to create a detailed cellular atlas of the swine cranial periosteum, highlighting the cellular dynamics and interactions essential for cranial bone injury repair. We noted that such injuries lead to an increase in M2 macrophages, which are key in modulating the periosteum's immune response and driving the bone regeneration process.
View Article and Find Full Text PDF
While previous studies have demonstrated the role of ubiquitin-conjugating enzyme 2C (UBE2C) in promoting β-cell proliferation and cancer cell lineage expansion, its specific function and mechanism in bone marrow mesenchymal stem/stromal cells (BMSCs) growth and differentiation remain poorly understood. Our findings indicate that mice with conditional Ube2c deletions in BMSCs and osteoblasts exhibit reduced skeletal bone mass and impaired bone repair. A significant reduction in the proliferative capacity of BMSCs was observed in conditional Ube2c knockout mice, with no effect on apoptosis.
View Article and Find Full Text PDF
Animal Model Exp Med
June 2024
Article Synopsis
Osteoporosis is a bone disease that makes bones weak, and some medicines for it can cause side effects. The study tested a traditional Chinese medicine called cinobufotalin (CB) to see if it can help prevent bone loss. Results showed that CB can help keep bones strong and work well with certain biological pathways to improve the growth of bone cells.
View Article and Find Full Text PDF
Primary bone mesenchymal stem cells (BMSCs) gradually lose stemness during in vitro expansion, which significantly affects the cell therapeutic effects. Here, we chose murine PαS (SCA-1PDGFRαCD45TER119) cells as representative of BMSCs and aimed to explore the premium culture conditions for PαS cells. Freshly isolated (fresh) PαS cells were obtained from the limbs of C57/6N mice by fluorescence-activated cell sorting (FACS).
View Article and Find Full Text PDF
Bone marrow stem cells (BMSCs) are a promising source of seed cells in bone tissue engineering, which needs a great quantity of cells. Cell senescence occurs as they are passaged, which could affect the therapeutic effects of cells. Therefore, this study aims to explore the transcriptomic differences among the uncultured and passaged cells, finding a practical target gene for anti-aging.
View Article and Find Full Text PDF
J Biomed Mater Res B Appl Biomater
April 2021
Ti and Ti alloys are bioinert materials and two frequent problems associated with them are bacterial infection and lack of osteogenic potential for rapid bone integration. To overcome the problems, the present study incorporated strontium (Sr) and silver (Ag) simultaneously into porous TiO coatings through a single-step technique, micro-arc oxidation (MAO). Incorporation of Sr and Ag brought no significant changes to coating micromorphology and physicochemical properties, but endowed TiO coatings with both strong antibacterial activity and osteogenic ability.
View Article and Find Full Text PDF
J Biomed Mater Res B Appl Biomater
November 2020
Various bone substitutes have been applied in sinus augmentation (SA) to overcome insufficient bone height at the posterior maxilla region caused by pneumatized sinus and severe alveolar bone resorption after teeth loss. However, their effectiveness in SA needs to be further elucidated. In this study, strontium-doped brushite (Sr-DCPD), a new bone substitute, together with bovine-derived hydroxyapatite (bHA) and synthetic hydroxyapatite (sHA) was used in rabbit maxillary SA with simultaneous implant installation.
View Article and Find Full Text PDF
Mol Cell Endocrinol
May 2020
Calcium/calmodulin-dependent protein kinases (CaMKs) are a group of important molecules mediating calcium signal transmission and have been proved to participate in osteoclastogenesis regulation. CaMKII, a subtype of CaMKs is expressed during osteoclast differentiation, but its role in osteoclastogenesis regulation remains controversial. In the present study, we identified that both mRNA and protein levels of CaMKII (δ) were upregulated in a time-dependent manner during osteoclast differentiation.
View Article and Find Full Text PDF