trying...
8101MCID_676f085dcd62a98c9f0bab67 38927412 Dazhuang Lu[author] Lu, Dazhuang[Full Author Name] lu, dazhuang[Author] trying2...
trying...
3892741220240629
2227-90591262024May29BiomedicinesBiomedicinesM2 Macrophages Guide Periosteal Stromal Cell Recruitment and Initiate Bone Injury Regeneration.120510.3390/biomedicines12061205The periosteum plays a critical role in bone repair and is significantly influenced by the surrounding immune microenvironment. In this study, we employed 10× single-cell RNA sequencing to create a detailed cellular atlas of the swine cranial periosteum, highlighting the cellular dynamics and interactions essential for cranial bone injury repair. We noted that such injuries lead to an increase in M2 macrophages, which are key in modulating the periosteum's immune response and driving the bone regeneration process. These macrophages actively recruit periosteal stromal cells (PSCs) by secreting Neuregulin 1 (NRG1), a crucial factor in initiating bone regeneration. This recruitment process emphasizes the critical role of PSCs in effective bone repair, positioning them as primary targets for therapeutic interventions. Our results indicate that enhancing the interaction between M2 macrophages and PSCs could significantly improve the outcomes of treatments aimed at cranial bone repair and regeneration.LuDazhuangD0000-0001-5681-5282Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China.ZhangYingfeiYDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China.LiangShiminSDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China.LiYangYDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China.QingJiaJDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China.GuLanxinL0000-0003-1094-2205Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China.XuXiuyunXDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China.WangZeyingZ0000-0003-1606-9937Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China.GaoXinXDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China.LiuHaoHDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China.ZhangXiaoXDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China.ZhouYongshengY0000-0002-4332-0878Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China.ZhangPingP0000-0001-8651-2100Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China.eng81930026National Natural Science Foundation of ChinaJournal Article20240529
SwitzerlandBiomedicines1016913042227-9059Neuregulin 1 (NRG1)craniofacial injurymacrophages (MØs)mesenchymal stromal cells (MSCs)periosteal stromal cells (PSCs)single-cell sequencingThe authors declare no conflicts of interest.
202441820245262024527202462764420246276432024627122024529epublish38927412PMC1120094310.3390/biomedicines12061205biomedicines12061205Oliver J.D., Madhoun W., Graham E.M., Hendrycks R., Renouard M., Hu M.S. Stem Cells Regenerating the Craniofacial Skeleton: Current State-of-the-Art and Future Directions. J. Clin. Med. 2020;9:3307. doi: 10.3390/jcm9103307.10.3390/jcm9103307PMC760250133076266Worthley D.L., Churchill M., Compton J.T., Tailor Y., Rao M., Si Y., Levin D., Schwartz M.G., Uygur A., Hayakawa Y., et al. Gremlin 1 Identifies a Skeletal Stem Cell with Bone, Cartilage, and Reticular Stromal Potential. Cell. 2015;160:269–284. doi: 10.1016/j.cell.2014.11.042.10.1016/j.cell.2014.11.042PMC443608225594183Zhou B.O., Yue R., Murphy M.M., Peyer J.G., Morrison S.J. Leptin-Receptor-Expressing Mesenchymal Stromal Cells Represent the Main Source of Bone Formed by Adult Bone Marrow. Cell Stem Cell. 2014;15:154–168. doi: 10.1016/j.stem.2014.06.008.10.1016/j.stem.2014.06.008PMC412710324953181Mendez-Ferrer S., Michurina T.V., Ferraro F., Mazloom A.R., Macarthur B.D., Lira S.A., Scadden D.T., Ma A., Enikolopov G.N., Frenette P.S. Mesenchymal and Haematopoietic Stem Cells Form a Unique Bone Marrow Niche. Nature. 2010;466:829–834. doi: 10.1038/nature09262.10.1038/nature09262PMC314655120703299Newton P.T., Li L., Zhou B., Schweingruber C., Hovorakova M., Xie M., Sun X., Sandhow L., Artemov A.V., Ivashkin E., et al. A Radical Switch in Clonality Reveals a Stem Cell Niche in the Epiphyseal Growth Plate. Nature. 2019;567:234–238. doi: 10.1038/s41586-019-0989-6.10.1038/s41586-019-0989-630814736Jee W. Bone Mechanics Handbook. CRC Press; Boca Raton, FL, USA: 2001. Integrated Bone Tissue Physiology: Anatomy and Physiology; pp. 1.1–1.68.Shen F., Huang X., He G., Shi Y. The Emerging Studies on Mesenchymal Progenitors in the Long Bone. Cell Biosci. 2023;13:105. doi: 10.1186/s13578-023-01039-x.10.1186/s13578-023-01039-xPMC1025785437301964Akiyama H., Kim J.E., Nakashima K., Balmes G., Iwai N., Deng J.M., Zhang Z., Martin J.F., Behringer R.R., Nakamura T., et al. Osteo-Chondroprogenitor Cells Are Derived from Sox9 Expressing Precursors. Proc. Natl. Acad. Sci. USA. 2005;102:14665–14670. doi: 10.1073/pnas.0504750102.10.1073/pnas.0504750102PMC123994216203988Shah H.N., Jones R.E., Borrelli M.R., Robertson K., Salhotra A., Wan D.C., Longaker M.T. Craniofacial and Long Bone Development in the Context of Distraction Osteogenesis. Plast. Reconstr. Surg. 2021;147:54e–65e. doi: 10.1097/PRS.0000000000007451.10.1097/PRS.0000000000007451PMC777303633370054Debnath S., Yallowitz A.R., McCormick J., Lalani S., Zhang T., Xu R., Li N., Liu Y., Yang Y.S., Eiseman M., et al. Discovery of a Periosteal Stem Cell Mediating Intramembranous Bone Formation. Nature. 2018;562:133–139. doi: 10.1038/s41586-018-0554-8.10.1038/s41586-018-0554-8PMC619339630250253Perrin S., Colnot C. Periosteal Skeletal Stem and Progenitor Cells in Bone Regeneration. Curr. Osteoporos. Rep. 2022;20:334–343. doi: 10.1007/s11914-022-00737-8.10.1007/s11914-022-00737-835829950Colnot C., Lu C., Hu D., Helms J.A. Distinguishing the Contributions of the Perichondrium, Cartilage, and Vascular Endothelium to Skeletal Development. Dev. Biol. 2004;269:55–69. doi: 10.1016/j.ydbio.2004.01.011.10.1016/j.ydbio.2004.01.01115081357Rana R.S., Wu J.S., Eisenberg R.L. Periosteal Reaction. AJR Am. J. Roentgenol. 2009;193:W259–W272. doi: 10.2214/AJR.09.3300.10.2214/AJR.09.330019770293Yiannakopoulos C.K., Kanellopoulos A.D., Trovas G.P., Dontas I.A., Lyritis G.P. The Biomechanical Capacity of the Periosteum in Intact Long Bones. Arch. Orthop. Trauma Surg. 2008;128:117–120. doi: 10.1007/s00402-007-0433-5.10.1007/s00402-007-0433-517874324Lin Z., Fateh A., Salem D.M., Intini G. Periosteum: Biology and Applications in Craniofacial Bone Regeneration. J. Dent. Res. 2014;93:109–116. doi: 10.1177/0022034513506445.10.1177/0022034513506445PMC389533424088412Colnot C., Zhang X., Tate M.L.K. Current Insights on the Regenerative Potential of the Periosteum: Molecular, Cellular, and Endogenous Engineering Approaches. J. Orthop. Res. 2012;30:1869–1878. doi: 10.1002/jor.22181.10.1002/jor.22181PMC462073222778049Dimitriou R., Jones E., McGonagle D., Giannoudis P.V. Bone Regeneration: Current Concepts and Future Directions. BMC Med. 2011;9:66. doi: 10.1186/1741-7015-9-66.10.1186/1741-7015-9-66PMC312371421627784Colnot C. Skeletal Cell Fate Decisions within Periosteum and Bone Marrow during Bone Regeneration. J. Bone Miner. Res. 2009;24:274–282. doi: 10.1359/jbmr.081003.10.1359/jbmr.081003PMC327635718847330Thompson Z., Miclau T., Hu D., Helms J.A. A Model for Intramembranous Ossification during Fracture Healing. J. Orthop. Res. 2002;20:1091–1098. doi: 10.1016/S0736-0266(02)00017-7.10.1016/S0736-0266(02)00017-712382977Colnot C., Thompson Z., Miclau T., Werb Z., Helms J.A. Altered Fracture Repair in the Absence of Mmp9. Development. 2003;130:4123–4133. doi: 10.1242/dev.00559.10.1242/dev.00559PMC277806412874132Ortinau L.C., Wang H., Lei K., Deveza L., Jeong Y., Hara Y., Grafe I., Rosenfeld S.B., Lee D., Lee B., et al. Identification of Functionally Distinct Mx1+Alphasma+ Periosteal Skeletal Stem Cells. Cell Stem Cell. 2019;25:784–796.e5. doi: 10.1016/j.stem.2019.11.003.10.1016/j.stem.2019.11.003PMC705520731809737Xu J., Wang Y., Li Z., Tian Y., Li Z., Lu A., Hsu C.Y., Negri S., Tang C., Tower R.J., et al. Pdgfralpha Reporter Activity Identifies Periosteal Progenitor Cells Critical for Bone Formation and Fracture Repair. Bone Res. 2022;10:7. doi: 10.1038/s41413-021-00176-8.10.1038/s41413-021-00176-8PMC878697735075130Matthews B.G., Novak S., Sbrana F.V., Funnell J.L., Cao Y., Buckels E.J., Grcevic D., Kalajzic I. Heterogeneity of Murine Periosteum Progenitors Involved in Fracture Healing. eLife. 2021;10:e58534. doi: 10.7554/eLife.58534.10.7554/eLife.58534PMC790659933560227Tournaire G., Stegen S., Giacomini G., Stockmans I., Moermans K., Carmeliet G., van Gastel N. Nestin-Gfp Transgene Labels Skeletal Progenitors in the Periosteum. Bone. 2020;133:115259. doi: 10.1016/j.bone.2020.115259.10.1016/j.bone.2020.11525932036051Shi Y., He G., Lee W.C., McKenzie J.A., Silva M.J., Long F. Gli1 Identifies Osteogenic Progenitors for Bone Formation and Fracture Repair. Nat. Commun. 2017;8:2043. doi: 10.1038/s41467-017-02171-2.10.1038/s41467-017-02171-2PMC572559729230039Ransom R.C., Hunter D.J., Hyman S., Singh G., Ransom S.C., Shen E.Z., Perez K.C., Gillette M., Li J., Liu B., et al. Axin2-Expressing Cells Execute Regeneration after Skeletal Injury. Sci. Rep. 2016;6:36524. doi: 10.1038/srep36524.10.1038/srep36524PMC511329927853243Bok S., Yallowitz A.R., Sun J., McCormick J., Cung M., Hu L., Lalani S., Li Z., Sosa B.R., Baumgartner T., et al. A Multi-Stem Cell Basis for Craniosynostosis and Calvarial Mineralization. Nature. 2023;621:804–812. doi: 10.1038/s41586-023-06526-2.10.1038/s41586-023-06526-2PMC1079966037730988Zhang P., Dong J., Fan X., Yong J., Yang M., Liu Y., Zhang X., Lv L., Wen L., Qiao J., et al. Characterization of Mesenchymal Stem Cells in Human Fetal Bone Marrow by Single-Cell Transcriptomic and Functional Analysis. Signal Transduct. Target Ther. 2023;8:126. doi: 10.1038/s41392-023-01338-2.10.1038/s41392-023-01338-2PMC1006368436997513Houlihan D.D., Mabuchi Y., Morikawa S., Niibe K., Araki D., Suzuki S., Okano H., Matsuzaki Y. Isolation of Mouse Mesenchymal Stem Cells on the Basis of Expression of Sca-1 and Pdgfr-Alpha. Nat. Protoc. 2012;7:2103–2111. doi: 10.1038/nprot.2012.125.10.1038/nprot.2012.12523154782Lin W., Li Q., Zhang D., Zhang X., Qi X., Wang Q., Chen Y., Liu C., Li H., Zhang S., et al. Mapping the Immune Microenvironment for Mandibular Alveolar Bone Homeostasis at Single-Cell Resolution. Bone Res. 2021;9:17. doi: 10.1038/s41413-021-00141-5.10.1038/s41413-021-00141-5PMC796074233723232Jin S., Guerrero-Juarez C.F., Zhang L., Chang I., Ramos R., Kuan C.H., Myung P., Plikus M.V., Nie Q. Inference and Analysis of Cell-Cell Communication Using Cellchat. Nat. Commun. 2021;12:1088. doi: 10.1038/s41467-021-21246-9.10.1038/s41467-021-21246-9PMC788987133597522Ishida K., Nagatake T., Saika A., Kawai S., Node E., Hosomi K., Kunisawa J. Induction of Unique Macrophage Subset by Simultaneous Stimulation with Lps and Il-4. Front. Immunol. 2023;14:1111729. doi: 10.3389/fimmu.2023.1111729.10.3389/fimmu.2023.1111729PMC1016763537180123Rios F.J., Touyz R.M., Montezano A.C. Isolation and Differentiation of Human Macrophages. Methods Mol. Biol. 2017;1527:311–320.28116726Ferretti C., Mattioli-Belmonte M. Periosteum Derived Stem Cells for Regenerative Medicine Proposals: Boosting Current Knowledge. World J. Stem Cells. 2014;6:266–277. doi: 10.4252/wjsc.v6.i3.266.10.4252/wjsc.v6.i3.266PMC413126925126377Duchamp de Lageneste O., Julien A., Abou-Khalil R., Frangi G., Carvalho C., Cagnard N., Cordier C., Conway S.J., Colnot C. Periosteum Contains Skeletal Stem Cells with High Bone Regenerative Potential Controlled by Periostin. Nat. Commun. 2018;9:773. doi: 10.1038/s41467-018-03124-z.10.1038/s41467-018-03124-zPMC582388929472541Matthews B.G., Grcevic D., Wang L., Hagiwara Y., Roguljic H., Joshi P., Shin D.G., Adams D.J., Kalajzic I. Analysis of Alphasma-Labeled Progenitor Cell Commitment Identifies Notch Signaling as an Important Pathway in Fracture Healing. J. Bone Miner. Res. 2014;29:1283–1294. doi: 10.1002/jbmr.2140.10.1002/jbmr.2140PMC486401524190076Dimitriou R., Tsiridis E., Giannoudis P.V. Current Concepts of Molecular Aspects of Bone Healing. Injury. 2005;36:1392–1404. doi: 10.1016/j.injury.2005.07.019.10.1016/j.injury.2005.07.01916102764Alexander K.A., Raggatt L.J., Millard S., Batoon L., Wu A.C.-K., Chang M.K., Hume D.A., Pettit A.R. Resting and Injury-Induced Inflamed Periosteum Contain Multiple Macrophage Subsets That Are Located at Sites of Bone Growth and Regeneration. Immunol. Cell Biol. 2017;95:7–16. doi: 10.1038/icb.2016.74.10.1038/icb.2016.7427553584Raggatt L.J., Wullschleger M.E., Alexander K.A., Wu A.C., Millard S.M., Kaur S., Maugham M.L., Gregory L.S., Steck R., Pettit A.R. Fracture Healing Via Periosteal Callus Formation Requires Macrophages for Both Initiation and Progression of Early Endochondral Ossification. Am. J. Pathol. 2014;184:3192–3204. doi: 10.1016/j.ajpath.2014.08.017.10.1016/j.ajpath.2014.08.01725285719Qiu P., Li M., Chen K., Fang B., Chen P., Tang Z., Lin X., Fan S. Periosteal Matrix-Derived Hydrogel Promotes Bone Repair through an Early Immune Regulation Coupled with Enhanced Angio- and Osteogenesis. Biomaterials. 2020;227:119552. doi: 10.1016/j.biomaterials.2019.119552.10.1016/j.biomaterials.2019.11955231670079Chang M.K., Raggatt L.J., Alexander K.A., Kuliwaba J.S., Fazzalari N.L., Schroder K., Maylin E.R., Ripoll V.M., Hume D.A., Pettit A.R. Osteal Tissue Macrophages Are Intercalated Throughout Human and Mouse Bone Lining Tissues and Regulate Osteoblast Function in Vitro and in Vivo. J. Immunol. 2008;181:1232–1244. doi: 10.4049/jimmunol.181.2.1232.10.4049/jimmunol.181.2.123218606677Schlundt C., El Khassawna T., Serra A., Dienelt A., Wendler S., Schell H., van Rooijen N., Radbruch A., Lucius R., Hartmann S., et al. Macrophages in Bone Fracture Healing: Their Essential Role in Endochondral Ossification. Bone. 2018;106:78–89. doi: 10.1016/j.bone.2015.10.019.10.1016/j.bone.2015.10.01926529389Gao B., Deng R., Chai Y., Chen H., Hu B., Wang X., Zhu S., Cao Y., Ni S., Wan M., et al. Macrophage-Lineage Trap+ Cells Recruit Periosteum-Derived Cells for Periosteal Osteogenesis and Regeneration. J. Clin. Investig. 2019;129:2578–2594. doi: 10.1172/JCI98857.10.1172/JCI98857PMC653834430946695Zhang Y., Bose T., Unger R.E., Jansen J.A., Kirkpatrick C.J., van den Beucken J. Macrophage Type Modulates Osteogenic Differentiation of Adipose Tissue Mscs. Cell Tissue Res. 2017;369:273–286. doi: 10.1007/s00441-017-2598-8.10.1007/s00441-017-2598-8PMC555284828361303Nicolaidou V., Wong M.M., Redpath A.N., Ersek A., Baban D.F., Williams L.M., Cope A.P., Horwood N.J. Monocytes Induce Stat3 Activation in Human Mesenchymal Stem Cells to Promote Osteoblast Formation. PLoS ONE. 2012;7:e39871. doi: 10.1371/journal.pone.0039871.10.1371/journal.pone.0039871PMC338900322802946Nikovics K., Durand M., Castellarin C., Burger J., Sicherre E., Collombet J.M., Oger M., Holy X., Favier A.L. Macrophages Characterization in an Injured Bone Tissue. Biomedicines. 2022;10:1385. doi: 10.3390/biomedicines10061385.10.3390/biomedicines10061385PMC921977935740407Jarde T., Chan W.H., Rossello F.J., Kahlon T.K., Theocharous M., Arackal T.K., Flores T., Giraud M., Richards E., Chan E., et al. Mesenchymal Niche-Derived Neuregulin-1 Drives Intestinal Stem Cell Proliferation and Regeneration of Damaged Epithelium. Cell Stem Cell. 2020;27:646–662.e7. doi: 10.1016/j.stem.2020.06.021.10.1016/j.stem.2020.06.02132693086
389179632024081420240814
1873-27631872024OctBoneBoneUBE2C orchestrates bone formation through stabilization of SMAD1/5.11717511717510.1016/j.bone.2024.117175S8756-3282(24)00164-9While previous studies have demonstrated the role of ubiquitin-conjugating enzyme 2C (UBE2C) in promoting β-cell proliferation and cancer cell lineage expansion, its specific function and mechanism in bone marrow mesenchymal stem/stromal cells (BMSCs) growth and differentiation remain poorly understood. Our findings indicate that mice with conditional Ube2c deletions in BMSCs and osteoblasts exhibit reduced skeletal bone mass and impaired bone repair. A significant reduction in the proliferative capacity of BMSCs was observed in conditional Ube2c knockout mice, with no effect on apoptosis. Additionally, conditional Ube2c knockout mice exhibited enhanced osteoclastic activity and reduced osteogenic differentiation. Furthermore, human BMSCs with stable UBE2C knockdown exhibited diminished capacity for osteogenic differentiation. Mechanistically, we discovered that UBE2C binds to and stabilizes SMAD1/5 protein expression levels. Interestingly, UBE2C's role in regulating osteogenic differentiation and SMAD1/5 expression levels appears to be independent of its enzymatic activity. Notably, UBE2C regulates osteogenic differentiation through SMAD1/5 signaling. In conclusion, our findings underscore the pivotal role of UBE2C in bone formation, emphasizing its contribution to enhanced osteogenic differentiation through the stabilization of SMAD1/5. These results propose UBE2C as a promising target for BMSC-based bone regeneration.Copyright © 2024. Published by Elsevier Inc.ZhangHuiHDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China.DuYanggeYDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China.LuDazhuangDDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China.WangXuXDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China.LiYangYDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China.QingJiaJDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China.ZhangYingfeiYDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China.LiuHaoHDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China.LvLongweiLDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China.ZhangXiaoXDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China.LiuYunsongYDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China.ZhouYongshengYDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China. Electronic address: kqzhouysh@hsc.pku.edu.cn.ZhangPingPDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China. Electronic address: zhangping332@bjmu.edu.cn.engJournal Article20240623
United StatesBone85040481873-27630Smad1 ProteinEC 2.3.2.23Ubiquitin-Conjugating Enzymes0Smad5 ProteinIMAnimalsOsteogenesisphysiologySmad1 ProteinmetabolismUbiquitin-Conjugating EnzymesmetabolismHumansCell DifferentiationphysiologyMice, KnockoutSmad5 ProteinmetabolismMesenchymal Stem CellsmetabolismcytologyMiceSignal TransductionCell ProliferationProtein StabilityOsteoblastsmetabolismOsteoclastsmetabolismcytologyBMSCsBone formationSMAD1SMAD5UBE2CDeclaration of competing interest The authors declare no competing interests.
202454202461820246192024815042202462604220246251918ppublish3891796310.1016/j.bone.2024.117175S8756-3282(24)00164-9
380136182024070820240710
2576-2095732024JunAnimal models and experimental medicineAnimal Model Exp MedCinobufotalin prevents bone loss induced by ovariectomy in mice through the BMPs/SMAD and Wnt/β-catenin signaling pathways.208221208-22110.1002/ame2.12359Osteoporosis is a chronic bone disease characterized by bone loss and decreased bone strength. However, current anti-resorptive drugs carry a risk of various complications. The deep learning-based efficacy prediction system (DLEPS) is a forecasting tool that can effectively compete in drug screening and prediction based on gene expression changes. This study aimed to explore the protective effect and potential mechanisms of cinobufotalin (CB), a traditional Chinese medicine (TCM), on bone loss.DLEPS was employed for screening anti-osteoporotic agents according to gene profile changes in primary osteoporosis. Micro-CT, histological and morphological analysis were applied for the bone protective detection of CB, and the osteogenic differentiation/function in human bone marrow mesenchymal stem cells (hBMMSCs) were also investigated. The underlying mechanism was verified using qRT-PCR, Western blot (WB), immunofluorescence (IF), etc. RESULTS: A safe concentration (0.25 mg/kg in vivo, 0.05 μM in vitro) of CB could effectively preserve bone mass in estrogen deficiency-induced bone loss and promote osteogenic differentiation/function of hBMMSCs. Both BMPs/SMAD and Wnt/β-catenin signaling pathways participated in CB-induced osteogenic differentiation, further regulating the expression of osteogenesis-associated factors, and ultimately promoting osteogenesis.Our study demonstrated that CB could significantly reverse estrogen deficiency-induced bone loss, further promoting osteogenic differentiation/function of hBMMSCs, with BMPs/SMAD and Wnt/β-catenin signaling pathways involved.© 2023 The Author(s). Animal Models and Experimental Medicine published by John Wiley & Sons Australia, Ltd on behalf of The Chinese Association for Laboratory Animal Sciences.LuDa-ZhuangDZDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.National Center of Stomatology, Beijing, China.National Clinical Research Center for Oral Diseases, Beijing, China.Beijing Key Laboratory of Digital Stomatology, Beijing, China.ZengLi-JunLJDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.National Center of Stomatology, Beijing, China.National Clinical Research Center for Oral Diseases, Beijing, China.Beijing Key Laboratory of Digital Stomatology, Beijing, China.LiYangYDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.National Center of Stomatology, Beijing, China.National Clinical Research Center for Oral Diseases, Beijing, China.Beijing Key Laboratory of Digital Stomatology, Beijing, China.GuRan-LiRLDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.National Center of Stomatology, Beijing, China.National Clinical Research Center for Oral Diseases, Beijing, China.Beijing Key Laboratory of Digital Stomatology, Beijing, China.HuMeng-LongMLDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.National Center of Stomatology, Beijing, China.National Clinical Research Center for Oral Diseases, Beijing, China.Beijing Key Laboratory of Digital Stomatology, Beijing, China.ZhangPingPDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.National Center of Stomatology, Beijing, China.National Clinical Research Center for Oral Diseases, Beijing, China.Beijing Key Laboratory of Digital Stomatology, Beijing, China.YuPengPNational Center of Stomatology, Beijing, China.National Clinical Research Center for Oral Diseases, Beijing, China.Beijing Key Laboratory of Digital Stomatology, Beijing, China.Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, China.ZhangXiaoXDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.National Center of Stomatology, Beijing, China.National Clinical Research Center for Oral Diseases, Beijing, China.Beijing Key Laboratory of Digital Stomatology, Beijing, China.XieZheng-WeiZWPeking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, China.LiuHaoH0000-0003-0977-5884Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.National Center of Stomatology, Beijing, China.National Clinical Research Center for Oral Diseases, Beijing, China.Beijing Key Laboratory of Digital Stomatology, Beijing, China.Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China.ZhouYong-ShengYSDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.National Center of Stomatology, Beijing, China.National Clinical Research Center for Oral Diseases, Beijing, China.Beijing Key Laboratory of Digital Stomatology, Beijing, China.Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China.National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.engL222145Beijing Natural Science FoundationL222030Beijing Natural Science FoundationPKU2022XGK008Emerging Engineering Interdisciplinary Project and the Fundamental Research Funds for the Central UniversitiesBMU2022PY010Peking University Medicine Fund of Fostering Young Scholars' Scientific & Technological InnovationJournal Article20231128
United StatesAnimal Model Exp Med1017262922576-20950BufanolidesL0QBZ37386cinobufotalin0Bone Morphogenetic Proteins0Smad ProteinsIMAnimalsBufanolidespharmacologyWnt Signaling Pathwaydrug effectsFemaleOvariectomyadverse effectsMiceOsteoporosisprevention & controlHumansBone Morphogenetic ProteinsmetabolismOsteogenesisdrug effectsSmad ProteinsmetabolismMesenchymal Stem Cellsdrug effectsmetabolismCell Differentiationdrug effectsBMPs/SMADWnt/β‐catenin signaling pathwaysbone losscinobufotalinhBMMSCsosteogenesisosteoporosisAuthors declare that there are no conflicts of interest regarding the publication of this article.
202383020231016202478642202311286422023112834720231128ppublish38013618PMC1122809010.1002/ame2.12359Bouvard B, Annweiler C, Legrand E. Osteoporosis in older adults. Joint Bone Spine. 2021;88:105135. doi:10.1016/j.jbspin.2021.10513510.1016/j.jbspin.2021.10513533486108Kanis JA, Cooper C, Rizzoli R, Reginster JY, Scientific Advisory Board of the European Society for C, Economic Aspects of O, the Committees of Scientific A, National Societies of the International Osteoporosis F . European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2019;30:3‐44. doi:10.1007/s00198-018-4704-510.1007/s00198-018-4704-5PMC702623330324412Tounta TS. Diagnosis of osteoporosis in dental patients. J Frailty Sarcopenia Falls. 2017;2:21‐27.PMC715537832300679Langdahl B. Treatment of postmenopausal osteoporosis with bone‐forming and antiresorptive treatments: combined and sequential approaches. Bone. 2020;139:115516. doi:10.1016/j.bone.2020.11551610.1016/j.bone.2020.11551632622871Khosla S, Hofbauer LC. Osteoporosis treatment: recent developments and ongoing challenges. Lancet Diabetes Endocrinol. 2017;5:898‐907. doi:10.1016/S2213-8587(17)30188-210.1016/S2213-8587(17)30188-2PMC579887228689769Anastasilakis AD, Toulis KA, Polyzos SA, Anastasilakis CD, Makras P. Long‐term treatment of osteoporosis: safety and efficacy appraisal of denosumab. Ther Clin Risk Manag. 2012;8:295‐306. doi:10.2147/TCRM.S2423910.2147/TCRM.S24239PMC338782822767993Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1‐34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344:1434‐1441. doi:10.1056/NEJM20010510344190410.1056/NEJM20010510344190411346808Borba VZ, Manas NC. The use of PTH in the treatment of osteoporosis. Arq Bras Endocrinol Metabol. 2010;54:213‐219. doi:10.1590/s0004-2730201000020001810.1590/s0004-2730201000020001820485911Mi B, Xiong W, Xu N, et al. Strontium‐loaded titania nanotube arrays repress osteoclast differentiation through multiple signalling pathways: in vitro and in vivo studies. Sci Rep. 2017;7:2328. doi:10.1038/s41598-017-02491-910.1038/s41598-017-02491-9PMC544380328539667Langdahl BL, Libanati C, Crittenden DB, et al. Romosozumab (sclerostin monoclonal antibody) versus teriparatide in postmenopausal women with osteoporosis transitioning from oral bisphosphonate therapy: a randomised, open‐label, phase 3 trial. Lancet. 2017;390:1585‐1594. doi:10.1016/S0140-6736(17)31613-610.1016/S0140-6736(17)31613-628755782Ye Y, Wen Y, Zhang Z, He S, Bo X. Drug‐target interaction prediction based on adversarial Bayesian personalized ranking. Biomed Res Int. 2021;2021:6690154. doi:10.1155/2021/669015410.1155/2021/6690154PMC788934633628808Jahan I, Sakib SA, Alam N, Majumder M, Sharmin S, Reza ASMA. Pharmacological insights into Chukrasia velutina bark: Experimental and computer‐aided approaches. Animal Model Exp Med. 2022;5(4):377‐388. doi:10.1002/ame2.12268. PMID: 36047481; PMCID: PMC9434563.10.1002/ame2.12268PMC943456336047481de Sousa Luis JA, Barros RPC, de Sousa NF, Muratov E, Scotti L, Scotti MT. Virtual screening of natural products database. Mini Rev Med Chem. 2021;21:2657‐2730. doi:10.2174/138955752066620073016154910.2174/138955752066620073016154932744975Chen B, Harrison RF, Papadatos G, et al. Evaluation of machine‐learning methods for ligand‐based virtual screening. J Comput Aided Mol Des. 2007;21:53‐62. doi:10.1007/s10822-006-9096-510.1007/s10822-006-9096-517205373Lamb J, Crawford ED, Peck D, et al. The connectivity map: using gene‐expression signatures to connect small molecules, genes, and disease. Science. 2006;313:1929‐1935. doi:10.1126/science.113293910.1126/science.113293917008526Zhu J, Wang J, Wang X, et al. Prediction of drug efficacy from transcriptional profiles with deep learning. Nat Biotechnol. 2021;39:1444‐1452. doi:10.1038/s41587-021-00946-z10.1038/s41587-021-00946-z34140681Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal stem cells for regenerative medicine. Cells. 2019;8:886. doi:10.3390/cells808088610.3390/cells8080886PMC672185231412678Andrzejewska A, Lukomska B, Janowski M. Concise review: mesenchymal stem cells: from roots to boost. Stem Cells. 2019;37:855‐864. doi:10.1002/stem.301610.1002/stem.3016PMC665810530977255Chen G, Deng C, Li YP. TGF‐beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 2012;8:272‐288. doi:10.7150/ijbs.292910.7150/ijbs.2929PMC326961022298955Wu M, Chen G, Li YP. TGF‐beta and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 2016;4:16009. doi:10.1038/boneres.2016.910.1038/boneres.2016.9PMC498505527563484Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013;19:179‐192. doi:10.1038/nm.307410.1038/nm.307423389618Tezuka K, Yasuda M, Watanabe N, et al. Stimulation of osteoblastic cell differentiation by notch. J Bone Miner Res. 2002;17:231‐239. doi:10.1359/jbmr.2002.17.2.23110.1359/jbmr.2002.17.2.23111811553Komori T. Regulation of osteoblast differentiation by transcription factors. J Cell Biochem. 2006;99:1233‐1239. doi:10.1002/jcb.2095810.1002/jcb.2095816795049Xu J, Qian SS, Chen YG, Li DY, Yan Q. Systematic review and meta‐analysis of efficacy and safety of Huachansu in treating cancer‐related pain. Zhongguo Zhong Yao Za Zhi. 2019;44:2627‐2636. doi:10.19540/j.cnki.cjcmm.20190304.00310.19540/j.cnki.cjcmm.20190304.00331359733Guo N, Miao Y, Sun M. Transcatheter hepatic arterial chemoembolization plus cinobufotalin injection adjuvant therapy for advanced hepatocellular carcinoma: a meta‐analysis of 27 trials involving 2,079 patients. Onco Targets Ther. 2018;11:8835‐8853. doi:10.2147/OTT.S18284010.2147/OTT.S182840PMC629087430573972Han Y, Ma R, Cao G, et al. Combined treatment of cinobufotalin and gefitinib exhibits potent efficacy against lung cancer. Evid Based Complement Alternat Med. 2021;2021:6612365. doi:10.1155/2021/661236510.1155/2021/6612365PMC818978334122599Wang J, Chang H, Su M, et al. The potential mechanisms of cinobufotalin treating colon adenocarcinoma by network pharmacology. Front Pharmacol. 2022;13:934729. doi:10.3389/fphar.2022.93472910.3389/fphar.2022.934729PMC926210535814224Chen R, Guan Z, Zhong X, Zhang W, Zhang Y. Network pharmacology prediction: the possible mechanisms of Cinobufotalin against osteosarcoma. Comput Math Methods Med. 2022;2022:3197402. doi:10.1155/2022/319740210.1155/2022/3197402PMC877642835069780Benisch P, Schilling T, Klein‐Hitpass L, et al. The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors. PLoS One. 2012;7:e45142. doi:10.1371/journal.pone.004514210.1371/journal.pone.0045142PMC345440123028809Rossouw JE, Anderson GL, Prentice RL, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women's Health Initiative randomized controlled trial. JAMA. 2002;288:321‐333. doi:10.1001/jama.288.3.32110.1001/jama.288.3.32112117397Khojastepour L, Hasani M, Ghasemi M, Mehdizadeh AR, Tajeripour F. Mandibular trabecular bone analysis using local binary pattern for osteoporosis diagnosis. J Biomed Phys Eng. 2019;9:81‐88.PMC640937530881937Liu H, Gu R, Zhu Y, et al. D‐mannose attenuates bone loss in mice via Treg cell proliferation and gut microbiota‐dependent anti‐inflammatory effects. Ther Adv Chronic Dis. 2020;11:2040622320912661. doi:10.1177/204062232091266110.1177/2040622320912661PMC716936432341776Qin C. Deepen the understanding and communication of animal models and experimental medicine research studies. Animal Model Exp Med. 2021;12:1. doi:10.1002/ame2.12156. PMID: 33738431; PMCID: PMC7954831.10.1002/ame2.12156PMC795483133738431Xian Y, Su Y, Liang J, et al. Oroxylin a reduces osteoclast formation and bone resorption via suppressing RANKL‐induced ROS and NFATc1 activation. Biochem Pharmacol. 2021;193:114761. doi:10.1016/j.bcp.2021.11476110.1016/j.bcp.2021.11476134492273Xue XH, Xue JX, Hu W, Shi FL, Yang Y. Nomilin targets the Keap1‐Nrf2 signalling and ameliorates the development of osteoarthritis. J Cell Mol Med. 2020;24:8579‐8588. doi:10.1111/jcmm.1548410.1111/jcmm.15484PMC741270532564468de Castro MJ, de Lamas C, Sanchez‐Pintos P, Gonzalez‐Lamuno D, Couce ML. Bone status in patients with phenylketonuria: a systematic review. Nutrients. 2020;12:2154. doi:10.3390/nu1207215410.3390/nu12072154PMC740092632698408Park TJ, Hong H, Kim MS, Park JS, Chi WJ, Kim SY. Prunetin 4'‐O‐phosphate, a novel compound, in RAW 264.7 macrophages exerts anti‐inflammatory activity via suppression of MAP kinases and the NFκB pathway. Molecules. 2021;26:6841. doi:10.3390/molecules2622684110.3390/molecules26226841PMC862205134833933Jdidi H, Ghorbel Koubaa F, Aoiadni N, Elleuch A, Makni‐Ayadi F, El Feki A. Effect of Medicago sativa compared to 17beta‐oestradiol on osteoporosis in ovariectomized mice. Arch Physiol Biochemistry. 2022;128:951‐958. doi:10.1080/13813455.2020.174164410.1080/13813455.2020.174164432193946Hadrich F, Sayadi S. Apigetrin inhibits adipogenesis in 3T3‐L1 cells by downregulating PPARgamma and CEBP‐alpha. Lipids Health Dis. 2018;17:95. doi:10.1186/s12944-018-0738-010.1186/s12944-018-0738-0PMC592230829695233Saeedi M, Goli F, Mahdavi M, et al. Synthesis and biological investigation of some novel sulfonamide and amide derivatives containing coumarin moieties. Iran J Pharm Res. 2014;13:881‐892.PMC417764825276188Zhao BJ, Wang J, Song J, et al. Beneficial effects of a flavonoid fraction of Herba Epimedii on bone metabolism in ovariectomized rats. Planta Med. 2016;82:322‐329. doi:10.1055/s-0035-155829410.1055/s-0035-155829426824623Fan Q, Zhao B, Wang C, et al. Subchronic toxicity studies of cortex dictamni extracts in mice and its potential hepatotoxicity mechanisms in vitro. Molecules. 2018;23:2486. doi:10.3390/molecules2310248610.3390/molecules23102486PMC622238330274140Emons J, Chagin AS, Savendahl L, Karperien M, Wit JM. Mechanisms of growth plate maturation and epiphyseal fusion. Horm Res Paediatrician. 2011;75:383‐391. doi:10.1159/00032778810.1159/00032778821540578Wheater G, Elshahaly M, Tuck SP, Datta HK, van Laar JM. The clinical utility of bone marker measurements in osteoporosis. J Transl Med. 2013;11:201. doi:10.1186/1479-5876-11-20110.1186/1479-5876-11-201PMC376590923984630Watts NB, Bilezikian JP, Camacho PM, et al. American Association of Clinical Endocrinologists Medical Guidelines for clinical practice for the diagnosis and treatment of postmenopausal osteoporosis. Endocr Pract. 2010;16(Suppl 3):1‐37. doi:10.4158/ep.16.s3.110.4158/ep.16.s3.1PMC487671421224201Ilyas T, Jin H, Siddique MI, Lee SJ, Kim H, Chua L. DIANA: a deep learning‐based paprika plant disease and pest phenotyping system with disease severity analysis. Front Plant Sci. 2022;13:983625. doi:10.3389/fpls.2022.98362510.3389/fpls.2022.983625PMC958285936275542Singh A, Chakraborty S, He Z, et al. Deep learning‐based predictions of older adults' adherence to cognitive training to support training efficacy. Front Psychol. 2022;13:980778. doi:10.3389/fpsyg.2022.98077810.3389/fpsyg.2022.980778PMC971384536467206Hajjo R, Setola V, Roth BL, Tropsha A. Chemocentric informatics approach to drug discovery: identification and experimental validation of selective estrogen receptor modulators as ligands of 5‐hydroxytryptamine‐6 receptors and as potential cognition enhancers. J Med Chem. 2012;55:5704‐5719. doi:10.1021/jm201165710.1021/jm2011657PMC340160822537153Stokes JM, Yang K, Swanson K, et al. A deep learning approach to antibiotic discovery. Cell. 2020;180:688‐702.e13. doi:10.1016/j.cell.2020.01.02110.1016/j.cell.2020.01.021PMC834917832084340Kai S, Lu JH, Hui PP, Zhao H. Pre‐clinical evaluation of cinobufotalin as a potential anti‐lung cancer agent. Biochem Biophys Res Commun. 2014;452:768‐774. doi:10.1016/j.bbrc.2014.08.14710.1016/j.bbrc.2014.08.14725201730Sun H, Wang W, Bai M, Liu D. Cinobufotalin as an effective adjuvant therapy for advanced gastric cancer: a meta‐analysis of randomized controlled trials. Onco Targets Ther. 2019;12:3139‐3160. doi:10.2147/OTT.S19668410.2147/OTT.S196684PMC650707731118669Emam H, Refaat A, Jawaid P, et al. Hyperthermia and radiation reduce the toxic side‐effects of bufadienolides for cancer therapy. Oncol Lett. 2017;14:1035‐1040. doi:10.3892/ol.2017.625610.3892/ol.2017.6256PMC549465428693270Abbasnezhad A, Salami F, Mohebbati R. A review: Systematic research approach on toxicity model of liver and kidney in laboratory animals. Animal Model Exp. 2022;5:436‐444. doi:10.1002/ame2.12230. Epub 2022 Aug 2. PMID: 35918879; PMCID: PMC9610155.10.1002/ame2.12230PMC961015535918879Cheng L, Chen YZ, Peng Y, et al. Ceramide production mediates cinobufotalin‐induced growth inhibition and apoptosis in cultured hepatocellular carcinoma cells. Tumour Biol. 2015;36:5763‐5771. doi:10.1007/s13277-015-3245-110.1007/s13277-015-3245-125724183Meng H, Shen M, Li J, et al. Novel SREBP1 inhibitor cinobufotalin suppresses proliferation of hepatocellular carcinoma by targeting lipogenesis. Eur J Pharmacol. 2021;906:174280. doi:10.1016/j.ejphar.2021.17428010.1016/j.ejphar.2021.17428034174265Kawai T, Katagiri W, Osugi M, Sugimura Y, Hibi H, Ueda M. Secretomes from bone marrow‐derived mesenchymal stromal cells enhance periodontal tissue regeneration. Cytotherapy. 2015;17:369‐381. doi:10.1016/j.jcyt.2014.11.00910.1016/j.jcyt.2014.11.00925595330Katagiri T, Watabe T. Bone morphogenetic proteins. Cold Spring Harb Perspect Biol. 2016;8:a021899. doi:10.1101/cshperspect.a02189910.1101/cshperspect.a021899PMC488882127252362Miyazono K, Kamiya Y, Morikawa M. Bone morphogenetic protein receptors and signal transduction. J Biochem. 2010;147:35‐51. doi:10.1093/jb/mvp14810.1093/jb/mvp14819762341Ma X, Yang J, Liu T, et al. Gukang capsule promotes fracture healing by activating BMP/SMAD and Wnt/beta‐catenin signaling pathways. Evid Based Complement Alternat Med. 2020;2020:7184502. doi:10.1155/2020/718450210.1155/2020/7184502PMC754546933062020Li Y, Jin D, Xie W, et al. PPAR‐gamma and Wnt regulate the differentiation of MSCs into adipocytes and osteoblasts respectively. Curr Stem Cell Res Ther. 2018;13:185‐192. doi:10.2174/1574888X1266617101214190810.2174/1574888X1266617101214190829034841Verkaar F, Zaman GJ. New avenues to target Wnt/beta‐catenin signaling. Drug Discov Today. 2011;16:35‐41. doi:10.1016/j.drudis.2010.11.00710.1016/j.drudis.2010.11.00721111060
3762668820230828
2227-90591182023Aug03BiomedicinesBiomedicinesBHLHE40 Maintains the Stemness of PαS Cells In Vitro by Targeting Zbp1 through the Wnt/β-Catenin Signaling Pathway.219010.3390/biomedicines11082190Primary bone mesenchymal stem cells (BMSCs) gradually lose stemness during in vitro expansion, which significantly affects the cell therapeutic effects. Here, we chose murine PαS (SCA-1+PDGFRα+CD45-TER119-) cells as representative of BMSCs and aimed to explore the premium culture conditions for PαS cells. Freshly isolated (fresh) PαS cells were obtained from the limbs of C57/6N mice by fluorescence-activated cell sorting (FACS). We investigated the differences in the stemness of PαS cells by proliferation, differentiation, and stemness markers in vitro and by ectopic osteogenesis and chondrogenesis ability in vivo, as well as the changes in the stemness of PαS cells during expansion in vitro. Gain- and loss-of-function experiments were applied to investigate the critical role and underlying mechanism of the basic helix-loop-helix family member E40 (BHLHE40) in maintaining the stemness of PαS cells. The stemness of fresh PαS cells representative in vivo was superior to that of passage 0 (P0) PαS cells in vitro. The stemness of PαS cells in vitro decreased gradually from P0 to passage 4 (P4). Moreover, BHLHE40 plays a critical role in regulating the stemness of PαS cells during in vitro expansion. Mechanically, BHLHE40 regulates the stemness of PαS cells by targeting Zbp1 through the Wnt/β-catenin signaling pathway. This work confirms that BHLHE40 is a critical factor for regulating the stemness of PαS cells during expansion in vitro and may provide significant indications in the exploration of premium culture conditions for PαS cells.HuMenglongMDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.TianYuemingY0000-0002-7027-7836Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.LiuXuenanXDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.GuoQianQDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.LuDazhuangDDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.WangXuX0000-0002-8466-0828Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.LvLongweiLDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.ZhangXiaoXDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.LiuYunsongY0000-0001-8364-1898Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.ZhouYongshengY0000-0002-4332-0878Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.ZhangPingPDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.eng81970911National Natural Science Foundation of China81930026National Natural Science Foundation of ChinaJournal Article20230803
SwitzerlandBiomedicines1016913042227-9059BHLHE40PαS cellsWnt/β-catenin signaling pathwayZbp1culture in vitrostemnessThe authors declare no conflict of interest.
202362320237302023812023826104320238261042202382611202383epublish37626688PMC1045282010.3390/biomedicines11082190biomedicines11082190Bieback K., Hecker A., Kocaömer A., Lannert H., Schallmoser K., Strunk D., Klüter H. Human Alternatives to Fetal Bovine Serum for the Expansion of Mesenchymal Stromal Cells from Bone Marrow. Stem Cells. 2009;27:2331–2341. doi: 10.1002/stem.139.10.1002/stem.13919544413Lin G.L., Hankenson K.D. Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J. Cell. Biochem. 2011;112:3491–3501. doi: 10.1002/jcb.23287.10.1002/jcb.23287PMC320208221793042Leveque X., Hochane M., Geraldo F., Dumont S., Gratas C., Oliver L., Gaignier C., Trichet V., Layrolle P., Heymann D., et al. Low-Dose Pesticide Mixture Induces Accelerated Mesenchymal Stem Cell Aging In Vitro. Stem Cells. 2019;37:1083–1094. doi: 10.1002/stem.3014.10.1002/stem.3014PMC685003830977188Pasumarthy K.K., Jayavelu N.D., Kilpinen L., Andrus C., Battle S.L., Korhonen M., Lehenkari P., Lund R., Laitinen S., Hawkins R.D. Methylome Analysis of Human Bone Marrow MSCs Reveals Extensive Age- and Culture-Induced Changes at Distal Regulatory Elements. Stem Cell Rep. 2017;9:999–1015. doi: 10.1016/j.stemcr.2017.07.018.10.1016/j.stemcr.2017.07.018PMC559924428844656Tokalov S.V., Grüner S., Schindler S., Wolf G., Baumann M., Abolmaali N. Age-Related Changes in the Frequency of Mesenchymal Stem Cells in the Bone Marrow of Rats. Stem Cells Dev. 2007;16:439–446. doi: 10.1089/scd.2006.0078.10.1089/scd.2006.007817610374Bourillot P.-Y., Savatier P. Krüppel-like transcription factors and control of pluripotency. BMC Biol. 2010;8:125–127. doi: 10.1186/1741-7007-8-125.10.1186/1741-7007-8-125PMC294628520875146Rombouts W.J.C., E Ploemacher R. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia. 2003;17:160–170. doi: 10.1038/sj.leu.2402763.10.1038/sj.leu.240276312529674Abbuehl J.-P., Tatarova Z., Held W., Huelsken J. Long-Term Engraftment of Primary Bone Marrow Stromal Cells Repairs Niche Damage and Improves Hematopoietic Stem Cell Transplantation. Cell Stem Cell. 2017;21:241–255.e6. doi: 10.1016/j.stem.2017.07.004.10.1016/j.stem.2017.07.00428777945Mo C., Guo J., Qin J., Zhang X., Sun Y., Wei H., Cao D., Zhang Y., Zhao C., Xiong Y., et al. Single-cell transcriptomics of LepR-positive skeletal cells reveals heterogeneous stress-dependent stem and progenitor pools. EMBO J. 2022;41:e108415. doi: 10.15252/embj.2021108415.10.15252/embj.2021108415PMC884498634957577Peister A., Mellad J.A., Larson B.L., Hall B.M., Gibson L.F., Prockop D.J. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood. 2004;103:1662–1668. doi: 10.1182/blood-2003-09-3070.10.1182/blood-2003-09-307014592819Morikawa S., Mabuchi Y., Kubota Y., Nagai Y., Niibe K., Hiratsu E., Suzuki S., Miyauchi-Hara C., Nagoshi N., Sunabori T., et al. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J. Exp. Med. 2009;206:2483–2496. doi: 10.1084/jem.20091046.10.1084/jem.20091046PMC276886919841085Ogawa Y., Morikawa S., Okano H., Mabuchi Y., Suzuki S., Yaguchi T., Sato Y., Mukai S., Yaguchi S., Inaba T., et al. MHC-compatible bone marrow stromal/stem cells trigger fibrosis by activating host T cells in a scleroderma mouse model. Elife. 2016;5:e09394. doi: 10.7554/eLife.09394.10.7554/eLife.09394PMC473975626809474Ow J.R., Tan Y.H., Jin Y., Bahirvani A.G., Taneja R. Stra13 and Sharp-1, the Non-Grouchy Regulators of Development and Disease. Curr. Top. Dev. Biol. 2014;110:317–338.25248481Zhu Y., Xu L., Zhang J., Hu X., Liu Y., Yin H., Lv T., Zhang H., Liu L., An H., et al. Sunitinib induces cellular senescence via p53/Dec1 activation in renal cell carcinoma cells. Cancer Sci. 2013;104:1052–1061. doi: 10.1111/cas.12176.10.1111/cas.12176PMC765714423578198Iizuka K., Horikawa Y. Regulation of lipogenesis via BHLHB2/DEC1 and ChREBP feedback looping. Biochem. Biophys. Res. Commun. 2008;374:95–100. doi: 10.1016/j.bbrc.2008.06.101.10.1016/j.bbrc.2008.06.10118602890Gosselin D., Link V.M., Romanoski C.E., Fonseca G.J., Eichenfield D.Z., Spann N.J., Stender J.D., Chun H.B., Garner H., Geissmann F., et al. Environment Drives Selection and Function of Enhancers Controlling Tissue-Specific Macrophage Identities. Cell. 2014;159:1327–1340. doi: 10.1016/j.cell.2014.11.023.10.1016/j.cell.2014.11.023PMC436438525480297Zafar A., Ng H.P., Kim G., Chan E.R., Mahabeleshwar G.H. BHLHE40 promotes macrophage pro-inflammatory gene expression and functions. FASEB J. 2021;35:e21940. doi: 10.1096/fj.202100944R.10.1096/fj.202100944RPMC860735534551158Rauschmeier R., Gustafsson C., Reinhardt A., A-Gonzalez N., Tortola L., Cansever D., Subramanian S., Taneja R., Rossner M.J., Sieweke M.H., et al. Bhlhe40 and Bhlhe41 transcription factors regulate alveolar macrophage self-renewal and identity. EMBO J. 2019;38:e101233. doi: 10.15252/embj.2018101233.10.15252/embj.2018101233PMC676942631414712Teng Y., Zhao Y., Li M., Liu Y., Cheng P., Lv Y., Mao F., Chen W., Yang S., Hao C., et al. Upexpression of BHLHE40 in gastric epithelial cells increases CXCL12 production through interaction with p-STAT3 in Helicobacter pylori -associated gastritis. FASEB J. 2020;34:1169–1181. doi: 10.1096/fj.201900464RR.10.1096/fj.201900464RR31914631Kiss Z., Mudryj M., Ghosh P.M. Non-circadian aspects of BHLHE40 cellular function in cancer. Genes Cancer. 2020;11:1–19. doi: 10.18632/genesandcancer.201.10.18632/genesandcancer.201PMC728990332577154Jarjour N.N., Schwarzkopf E.A., Bradstreet T.R., Shchukina I., Lin C.-C., Huang S.C.-C., Lai C.-W., Cook M.E., Taneja R., Stappenbeck T.S., et al. Bhlhe40 mediates tissue-specific control of macrophage proliferation in homeostasis and type 2 immunity. Nat. Immunol. 2019;20:687–700. doi: 10.1038/s41590-019-0382-5.10.1038/s41590-019-0382-5PMC653132431061528Yun Z., Maecker H.L., Johnson R.S., Giaccia A.J. Inhibition of PPAR gamma 2 gene expression by the HIF-1-regulated gene DEC1/Stra13: A mechanism for regulation of adipogenesis by hypoxia. Dev. Cell. 2002;2:331–341. doi: 10.1016/S1534-5807(02)00131-4.10.1016/S1534-5807(02)00131-411879638Ozaki N., Noshiro M., Kawamoto T., Nakashima A., Honda K., Fukuzaki-Dohi U., Honma S., Fujimoto K., Tanimoto K., Tanne K., et al. Regulation of basic helix-loop-helix transcription factors Dec1 and Dec2 by RORα and their roles in ad-ipogenesis. Genes Cells. 2012;17:109–121. doi: 10.1111/j.1365-2443.2011.01574.x.10.1111/j.1365-2443.2011.01574.x22244086Sethuraman A., Brown M., Krutilina R., Wu Z.-H., Seagroves T.N., Pfeffer L.M., Fan M. BHLHE40 confers a pro-survival and pro-metastatic phenotype to breast cancer cells by modulating HBEGF secretion. Breast Cancer Res. 2018;20:117–133. doi: 10.1186/s13058-018-1046-3.10.1186/s13058-018-1046-3PMC616778730285805Chen Y., Henson E.S., Xiao W., Huang D., McMillan-Ward E.M., Israels S.J., Gibson S.B. Tyrosine kinase receptor EGFR regulates the switch in cancer cells between cell survival and cell death induced by autophagy in hypoxia. Autophagy. 2016;12:1029–1046. doi: 10.1080/15548627.2016.1164357.10.1080/15548627.2016.1164357PMC492244527166522Jia Y., Hu R., Li P., Zheng Y., Wang Y., Ma X. DEC1 is required for anti-apoptotic activity of gastric cancer cells under hypoxia by promoting Survivin expression. Gastric Cancer. 2018;21:632–642. doi: 10.1007/s10120-017-0780-z.10.1007/s10120-017-0780-z29204860Jia Y.-F., Xiao D.-J., Ma X.-L., Song Y.-Y., Hu R., Kong Y., Zheng Y., Han S.-Y., Hong R.-L., Wang Y.-S. Differentiated embryonic chondrocyte-expressed gene 1 is associated with hypoxia-inducible factor 1α and Ki67 in human gastric cancer. Diagn. Pathol. 2013;8:37–43. doi: 10.1186/1746-1596-8-37.10.1186/1746-1596-8-37PMC360639123445622Xiong J., Yang H., Luo W., Shan E., Liu J., Zhang F., Xi T., Yang J. The anti-metastatic effect of 8-MOP on hepatocellular carcinoma is potentiated by the down-regulation of bHLH transcription factor DEC1. Pharmacol. Res. 2016;105:121–133. doi: 10.1016/j.phrs.2016.01.025.10.1016/j.phrs.2016.01.02526808085Murakami K., Wu Y., Imaizumi T., Aoki Y., Liu Q., Yan X., Seino H., Yoshizawa T., Morohashi S., Kato Y., et al. DEC1 promotes hypoxia-induced epithelial-mesenchymal transition (EMT) in human hepatocellular carcinoma cells. Biomed. Res. 2017;38:221–227. doi: 10.2220/biomedres.38.221.10.2220/biomedres.38.22128794399Nusspaumer G., Jaiswal S., Barbero A., Reinhardt R., Ronen D.I., Haumer A., Lufkin T., Martin I., Zeller R. Ontogenic Identification and Analysis of Mesenchymal Stromal Cell Populations during Mouse Limb and Long Bone Development. Stem Cell Rep. 2017;9:1124–1138. doi: 10.1016/j.stemcr.2017.08.007.10.1016/j.stemcr.2017.08.007PMC563921228919259Lin X., Dong R., Diao S., Yu G., Wang L., Li J., Fan Z. SFRP2 enhanced the adipogenic and neuronal differentiation potentials of stem cells from apical papilla. Cell Biol. Int. 2017;41:534–543. doi: 10.1002/cbin.10757.10.1002/cbin.1075728244619Wang J.-J., Dong R., Wang L.-P., Wang J.-S., Du J., Wang S.-L., Shan Z.-C., Fan Z.-P. Histone demethylase KDM2B inhibits the chondrogenic differentiation potentials of stem cells from apical papilla. Int. J. Clin. Exp. Med. 2015;8:2165–2173.PMC440279425932147Liu X., Li Z., Liu H., Zhu Y., Xia D., Wang S., Gu R., Wu W., Zhang P., Liu Y., et al. Low concentration flufenamic acid enhances osteogenic differentiation of mesenchymal stem cells and suppresses bone loss by inhibition of the NF-κB signaling pathway. Stem Cell Res. Ther. 2019;10:213–226. doi: 10.1186/s13287-019-1321-y.10.1186/s13287-019-1321-yPMC664251731324207Zhang P., Liu Y., Jin C., Zhang M., Lv L., Zhang X., Liu H., Zhou Y. Histone H3K9 Acetyltransferase PCAF Is Essential for Osteogenic Differentiation Through Bone Morphogenetic Protein Signaling and May Be Involved in Osteoporosis. Stem Cells. 2016;34:2332–2341. doi: 10.1002/stem.2424.10.1002/stem.242427300495Min Z., Xiaomeng L., Zheng L., Yangge D., Xuejiao L., Longwei L., Xiao Z., Yunsong L., Ping Z., Yongsheng Z. Asymmetrical methyltransferase PRMT3 regulates human mesenchymal stem cell osteogenesis via miR-3648. Cell Death Dis. 2019;10:581–597. doi: 10.1038/s41419-019-1815-7.10.1038/s41419-019-1815-7PMC668005131378783Zhang P., Liu Y., Wang Y., Zhang M., Lv L., Zhang X., Zhou Y. SIRT6 promotes osteogenic differentiation of mesenchymal stem cells through BMP signaling. Sci. Rep. 2017;7:10229–10238. doi: 10.1038/s41598-017-10323-z.10.1038/s41598-017-10323-zPMC557896428860594Nagele P. Misuse of standard error of the mean (SEM) when reporting variability of a sample. A critical evaluation of four anaesthesia journals. Br. J. Anaesth. 2003;90:514–516. doi: 10.1093/bja/aeg087.10.1093/bja/aeg08712644429Barde M.P., Barde P.J. What to use to express the variability of data: Standard deviation or standard error of mean? Perspect Clin. Res. 2012;3:113–116. doi: 10.4103/2229-3485.100662.10.4103/2229-3485.100662PMC348722623125963Jaykaran J. “Mean ± SEM” or “Mean (SD)”? Indian J. Pharmacol. 2010;42:329. doi: 10.4103/0253-7613.70402.10.4103/0253-7613.70402PMC295922221206631Gomez-Larrauri A., Gangoiti P., Camacho L., Presa N., Martin C., Gomez-Muñoz A. Phosphatidic Acid Stimulates Lung Cancer Cell Migration through Interaction with the LPA1 Receptor and Subsequent Activation of MAP Kinases and STAT3. Biomedicines. 2023;11:1804–1821. doi: 10.3390/biomedicines11071804.10.3390/biomedicines11071804PMC1037681037509443Barbur I., Opris H., Colosi H.A., Baciut M., Opris D., Cuc S., Petean I., Moldovan M., Dinu C.M., Baciut G. Improving the Mechanical Properties of Orthodontic Occlusal Splints Using Nanoparticles: Silver and Zinc Oxide. Biomedicines. 2023;11:1965–1979. doi: 10.3390/biomedicines11071965.10.3390/biomedicines11071965PMC1037715737509604Yue F., Cheng Y., Breschi A., Vierstra J., Wu W., Ryba T., Sandstrom R., Ma Z., Davis C., Pope B.D., et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature. 2014;515:355–364. doi: 10.1038/nature13992.10.1038/nature13992PMC426610625409824Zhao X., Xie L., Wang Z., Wang J., Xu H., Han X., Bai D., Deng P. ZBP1 (DAI/DLM-1) promotes osteogenic differentiation while inhibiting adipogenic differentiation in mesenchymal stem cells through a positive feedback loop of Wnt/β-catenin signaling. Bone Res. 2020;8:12–21. doi: 10.1038/s41413-020-0085-4.10.1038/s41413-020-0085-4PMC705803632195010D’amico R., Cordaro M., Siracusa R., Impellizzeri D., Salinaro A.T., Scuto M., Ontario M.L., Crea R., Cuzzocrea S., Di Paola R., et al. Wnt/β-Catenin Pathway in Experimental Model of Fibromyalgia: Role of Hidrox®. Biomedicines. 2021;9:1683–1693. doi: 10.3390/biomedicines9111683.10.3390/biomedicines9111683PMC861592534829912Chua K.-H., Safwani W.K.Z.W., Hamid A.A., Shuhup S.K., Haflah N.H.M., Yahaya N.H.M. Retropatellar fat pad–derived stem cells from older osteoarthritic patients have lesser differentiation capacity and expression of stemness genes. Cytotherapy. 2014;16:599–611. doi: 10.1016/j.jcyt.2013.08.013.10.1016/j.jcyt.2013.08.01324290076Chen Q., Zhou H., Hu P. Stemness distinctions between the ectomesenchymal stem cells from neonatal and adult mice. Acta Histochem. 2017;119:822–830. doi: 10.1016/j.acthis.2017.10.008.10.1016/j.acthis.2017.10.00829107325Tratwal J., Rojas-Sutterlin S., Bataclan C., Blum S., Naveiras O. Bone marrow adiposity and the hematopoietic niche: A historical perspective of reciprocity, heterogeneity, and lineage commitment. Best Pr. Res. Clin. Endocrinol. Metab. 2021;35:101564–101582. doi: 10.1016/j.beem.2021.101564.10.1016/j.beem.2021.10156434417114Angelopoulos I., Brizuela C., Khoury M. Gingival Mesenchymal Stem Cells Outperform Haploidentical Dental Pulp-derived Mesenchymal Stem Cells in Proliferation Rate, Migration Ability, and Angiogenic Potential. Cell Transplant. 2018;27:967–978. doi: 10.1177/0963689718759649.10.1177/0963689718759649PMC605091029770705Dhanasekaran M., Indumathi S., Lissa R.P., Harikrishnan R., Rajkumar J.S., Sudarsanam D. A comprehensive study on optimization of proliferation and differentiation potency of bone marrow derived mesenchymal stem cells under prolonged culture condition. Cytotechnology. 2013;65:187–197. doi: 10.1007/s10616-012-9471-0.10.1007/s10616-012-9471-0PMC356087822729554Snippert H.J., Clevers H. Tracking adult stem cells. EMBO Rep. 2011;12:113–122. doi: 10.1038/embor.2010.216.10.1038/embor.2010.216PMC304943921252944Baustian C., Hanley S., Ceredig R. Isolation, selection and culture methods to enhance clonogenicity of mouse bone marrow derived mesenchymal stromal cell precursors. Stem Cell Res. Ther. 2015;6:151–163. doi: 10.1186/s13287-015-0139-5.10.1186/s13287-015-0139-5PMC454907626303631
372987172023061220230612
1422-006724112023Jun05International journal of molecular sciencesInt J Mol SciZIM1 Combined with Hydrogel Inhibits Senescence of Primary PαS Cells during In Vitro Expansion.976610.3390/ijms24119766Bone marrow stem cells (BMSCs) are a promising source of seed cells in bone tissue engineering, which needs a great quantity of cells. Cell senescence occurs as they are passaged, which could affect the therapeutic effects of cells. Therefore, this study aims to explore the transcriptomic differences among the uncultured and passaged cells, finding a practical target gene for anti-aging. We sorted PαS (PDGFR-α+SCA-1+CD45-TER119-) cells as BMSCs by flow cytometry analysis. The changes in cellular senescence phenotype (Counting Kit-8 (CCK-8) assay, reactive oxygen species (ROS) test, senescence-associated β-galactosidase (SA-β-Gal) activity staining, expression of aging-related genes, telomere-related changes and in vivo differentiation potential) and associated transcriptional alterations during three important cell culture processes (in vivo, first adherence in vitro, first passage, and serial passage in vitro) were studied. Overexpression plasmids of potential target genes were made and examed. Gelatin methacryloyl (GelMA) was applied to explore the anti-aging effects combined with the target gene. Aging-related genes and ROS levels increased, telomerase activity and average telomere length decreased, and SA-β-Gal activities increased as cells were passaged. RNA-seq offered that imprinted zinc-finger gene 1 (Zim1) played a critical role in anti-aging during cell culture. Further, Zim1 combined with GelMA reduced the expression of P16/P53 and ROS levels with doubled telomerase activities. Few SA-β-Gal positive cells were found in the above state. These effects are achieved at least by the activation of Wnt/β-catenin signaling through the regulation of Wnt2. The combined application of Zim1 and hydrogel could inhibit the senescence of BMSCs during in vitro expansion, which may benefit clinical application.TianYuemingY0000-0002-7027-7836Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.HuMenglongMDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.LiuXuenanXDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.WangXuXDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.LuDazhuangDDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.LiZhengZDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.LiuYunsongY0000-0001-8364-1898Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.ZhangPingPDepartment of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.ZhouYongshengY0000-0002-4332-0878Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China.eng7202233Beijing Natural Science Foundation81970911National Natural Science Foundation of China81930026National Natural Science Foundation of ChinaJournal Article20230605
SwitzerlandInt J Mol Sci1010927911422-00670Reactive Oxygen SpeciesEC 2.7.7.49Telomerase0HydrogelsIMReactive Oxygen SpeciesmetabolismTelomerasemetabolismHydrogelsCellular SenescencegeneticsCells, CulturedWnt pathwaycellular senescencehydrogelstem cellstranscriptomicsThe authors declare no conflict of interest.
202352320235312023632023612643202361015132023610114202365epublish37298717PMC1025359610.3390/ijms24119766ijms24119766Horwitz E.M., Gordon P.L., Koo W.K., Marx J.C., Neel M.D., McNall R.Y., Muul L., Hofmann T. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc. Natl. Acad. Sci. USA. 2002;99:8932–8937. doi: 10.1073/pnas.132252399.10.1073/pnas.132252399PMC12440112084934Morikawa S., Mabuchi Y., Niibe K., Suzuki S., Nagoshi N., Sunabori T., Shimmura S., Nagai Y., Nakagawa T., Okano H., et al. Development of mesenchymal stem cells partially originate from the neural crest. Biochem. Biophys. Res. Commun. 2009;379:1114–1119. doi: 10.1016/j.bbrc.2009.01.031.10.1016/j.bbrc.2009.01.03119161980Crippa S., Santi L., Bosotti R., Porro G., Bernardo M.E. Bone Marrow-Derived Mesenchymal Stromal Cells: A Novel Target to Optimize Hematopoietic Stem Cell Transplantation Protocols in Hematological Malignancies and Rare Genetic Disorders. J. Clin. Med. 2019;9:2. doi: 10.3390/jcm9010002.10.3390/jcm9010002PMC701999131861268Li H., Ghazanfari R., Zacharaki D., Ditzel N., Isern J., Ekblom M., Mendez-Ferrer S., Kassem M., Scheding S. Low/negative expression of PDGFR-alpha identifies the candidate primary mesenchymal stromal cells in adult human bone marrow. Stem Cell. Rep. 2014;3:965–974. doi: 10.1016/j.stemcr.2014.09.018.10.1016/j.stemcr.2014.09.018PMC426406625454633Raggi C., Berardi A.C. Mesenchymal stem cells, aging and regenerative medicine. Muscles Ligaments Tendons J. 2012;2:239–242.PMC366652523738303Bruna F., Contador D., Conget P., Erranz B., Sossa C.L., Arango-Rodriguez M.L. Regenerative Potential of Mesenchymal Stromal Cells: Age-Related Changes. Stem Cells Int. 2016;2016:1461648. doi: 10.1155/2016/1461648.10.1155/2016/1461648PMC487625727247575Bonab M.M., Alimoghaddam K., Talebian F., Ghaffari S.H., Ghavamzadeh A., Nikbin B. Aging of mesenchymal stem cell in vitro. BMC Cell. Biol. 2006;7:14. doi: 10.1186/1471-2121-7-14.10.1186/1471-2121-7-14PMC143588316529651Parsch D., Fellenberg J., Brummendorf T.H., Eschlbeck A.M., Richter W. Telomere length and telomerase activity during expansion and differentiation of human mesenchymal stem cells and chondrocytes. J. Mol. Med. 2004;82:49–55.14647922Chen Q., Shou P., Zheng C., Jiang M., Cao G., Yang Q., Cao J., Xie N., Velletri T., Zhang X., et al. Fate decision of mesenchymal stem cells: Adipocytes or osteoblasts? Cell. Death Differ. 2016;23:1128–1139. doi: 10.1038/cdd.2015.168.10.1038/cdd.2015.168PMC494688626868907Peister A., Mellad J.A., Larson B.L., Hall B.M., Gibson L.F., Prockop D.J. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood. 2004;103:1662–1668. doi: 10.1182/blood-2003-09-3070.10.1182/blood-2003-09-307014592819Zhu H., Guo Z.K., Jiang X.X., Li H., Wang X.Y., Yao H.Y., Zhang Y., Mao N. A protocol for isolation and culture of mesenchymal stem cells from mouse compact bone. Nat. Protoc. 2010;5:550–560. doi: 10.1038/nprot.2009.238.10.1038/nprot.2009.23820203670Morikawa S., Mabuchi Y., Kubota Y., Nagai Y., Niibe K., Hiratsu E., Suzuki S., Miyauchi-Hara C., Nagoshi N., Sunabori T., et al. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J. Exp. Med. 2009;206:2483–2496. doi: 10.1084/jem.20091046.10.1084/jem.20091046PMC276886919841085Houlihan D.D., Mabuchi Y., Morikawa S., Niibe K., Araki D., Suzuki S., Okano H., Matsuzaki Y. Isolation of mouse mesenchymal stem cells on the basis of expression of Sca-1 and PDGFR-alpha. Nat. Protoc. 2012;7:2103–2111. doi: 10.1038/nprot.2012.125.10.1038/nprot.2012.12523154782Hayflick L., Moorhead P.S. The serial cultivation of human diploid cell strains. Exp. Cell. Res. 1961;25:585–621. doi: 10.1016/0014-4827(61)90192-6.10.1016/0014-4827(61)90192-613905658Calcinotto A., Kohli J., Zagato E., Pellegrini L., Demaria M., Alimonti A. Cellular Senescence: Aging, Cancer, and Injury. Physiol. Rev. 2019;99:1047–1078. doi: 10.1152/physrev.00020.2018.10.1152/physrev.00020.201830648461Gonzalez-Gualda E., Baker A.G., Fruk L., Munoz-Espin D. A guide to assessing cellular senescence in vitro and in vivo. FEBS J. 2021;288:56–80. doi: 10.1111/febs.15570.10.1111/febs.1557032961620Storer M., Mas A., Robert-Moreno A., Pecoraro M., Ortells M.C., Di Giacomo V., Yosef R., Pilpel N., Krizhanovsky V., Sharpe J., et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell. 2013;155:1119–1130. doi: 10.1016/j.cell.2013.10.041.10.1016/j.cell.2013.10.04124238961Davaapil H., Brockes J.P., Yun M.H. Conserved and novel functions of programmed cellular senescence during vertebrate development. Development. 2017;144:106–114. doi: 10.1242/dev.138222.10.1242/dev.138222PMC527862727888193Demaria M., Ohtani N., Youssef S.A., Rodier F., Toussaint W., Mitchell J.R., Laberge R.M., Vijg J., Van Steeg H., Dolle M.E., et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell. 2014;31:722–733. doi: 10.1016/j.devcel.2014.11.012.10.1016/j.devcel.2014.11.012PMC434962925499914Kamal N.S.M., Safuan S., Shamsuddin S., Foroozandeh P. Aging of the cells: Insight into cellular senescence and detection Methods. Eur. J. Cell. Biol. 2020;99:151108. doi: 10.1016/j.ejcb.2020.151108.10.1016/j.ejcb.2020.15110832800277Modaresifar K., Hadjizadeh A., Niknejad H. Design and fabrication of GelMA/chitosan nanoparticles composite hydrogel for angiogenic growth factor delivery. Artif. Cells Nanomed. Biotechnol. 2018;46:1799–1808. doi: 10.1080/21691401.2017.1392970.10.1080/21691401.2017.139297029065727Hadjizadeh A., Doillon C.J. Directional migration of endothelial cells towards angiogenesis using polymer fibres in a 3D co-culture system. J. Tissue Eng. Regen. Med. 2010;4:524–531. doi: 10.1002/term.269.10.1002/term.26920872739Hadjizadeh A., Mohebbi-Kalhori D. Interfacial self-assembly of endothelial cells toward angiogenic network formation in the composite hydrogel culture systems. J. Bioact. Compat. Pol. 2017;32:61–73. doi: 10.1177/0883911516653147.10.1177/0883911516653147Moghassemi S., Hadjizadeh A., Hakamivala A., Omidfar K. Growth Factor-Loaded Nano-niosomal Gel Formulation and Characterization. Aaps Pharmscitech. 2017;18:34–41. doi: 10.1208/s12249-016-0579-y.10.1208/s12249-016-0579-y27502406Modaresifar K., Azizian S., Hadjizadeh A. Nano/Biomimetic Tissue Adhesives Development: From Research to Clinical Application. Polym. Rev. 2016;56:329–361. doi: 10.1080/15583724.2015.1114493.10.1080/15583724.2015.1114493Xie M., Gao Q., Zhao H., Nie J., Fu Z., Wang H., Chen L., Shao L., Fu J., Chen Z., et al. Electro-Assisted Bioprinting of Low-Concentration GelMA Microdroplets. Small. 2019;15:e1804216. doi: 10.1002/smll.201804216.10.1002/smll.20180421630569632Colosi C., Shin S.R., Manoharan V., Massa S., Costantini M., Barbetta A., Dokmeci M.R., Dentini M., Khademhosseini A. Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low-Viscosity Bioink. Adv. Mater. 2016;28:677–684. doi: 10.1002/adma.201503310.10.1002/adma.201503310PMC480447026606883Liu W.J., Heinrich M.A., Zhou Y.X., Akpek A., Hu N., Liu X., Guan X.F., Zhong Z., Jin X.Y., Khademhosseini A., et al. Extrusion Bioprinting of Shear-Thinning Gelatin Methacryloyl Bioinks. Adv. Healthc. Mater. 2017;6:1601451. doi: 10.1002/adhm.201601451.10.1002/adhm.201601451PMC554578628464555Yue K., Trujillo-de Santiago G., Alvarez M.M., Tamayol A., Annabi N., Khademhosseini A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254–271. doi: 10.1016/j.biomaterials.2015.08.045.10.1016/j.biomaterials.2015.08.045PMC461000926414409Marin-Llera J.C., Lorda-Diez C.I., Hurle J.M., Chimal-Monroy J. SCA-1/Ly6A Mesodermal Skeletal Progenitor Subpopulations Reveal Differential Commitment of Early Limb Bud Cells. Front. Cell. Dev. Biol. 2021;9:656999. doi: 10.3389/fcell.2021.656999.10.3389/fcell.2021.656999PMC832273734336823Zhang P., Dong J., Fan X., Yong J., Yang M., Liu Y., Zhang X., Lv L., Wen L., Qiao J., et al. Characterization of mesenchymal stem cells in human fetal bone marrow by single-cell transcriptomic and functional analysis. Signal. Transduct. Target. Ther. 2023;8:126. doi: 10.1038/s41392-023-01338-2.10.1038/s41392-023-01338-2PMC1006368436997513Morison I.M., Reeve A.E. A catalogue of imprinted genes and parent-of-origin effects in humans and animals. Hum. Mol. Genet. 1998;7:1599–1609. doi: 10.1093/hmg/7.10.1599.10.1093/hmg/7.10.15999735381Kim J., Lu X., Stubbs L. Zim1, a maternally expressed mouse Kruppel-type zinc-finger gene located in proximal chromosome 7. Hum. Mol. Genet. 1999;8:847–854. doi: 10.1093/hmg/8.5.847.10.1093/hmg/8.5.84710196374Kuroiwa Y., Kaneko-Ishino T., Kagitani F., Kohda T., Li L.L., Tada M., Suzuki R., Yokoyama M., Shiroishi T., Wakana S., et al. Peg3 imprinted gene on proximal chromosome 7 encodes for a zinc finger protein. Nat. Genet. 1996;12:186–190. doi: 10.1038/ng0296-186.10.1038/ng0296-1868563758Kirschner K., Rattanavirotkul N., Quince M.F., Chandra T. Functional heterogeneity in senescence. Biochem. Soc. Trans. 2020;48:765–773. doi: 10.1042/BST20190109.10.1042/BST20190109PMC732934132369550Tuttle C.S.L., Waaijer M.E.C., Slee-Valentijn M.S., Stijnen T., Westendorp R., Maier A.B. Cellular senescence and chronological age in various human tissues: A systematic review and meta-analysis. Aging Cell. 2020;19:e13083. doi: 10.1111/acel.13083.10.1111/acel.13083PMC699694131808308Beausejour C.M., Krtolica A., Galimi F., Narita M., Lowe S.W., Yaswen P., Campisi J. Reversal of human cellular senescence: Roles of the p53 and p16 pathways. EMBO J. 2003;22:4212–4222. doi: 10.1093/emboj/cdg417.10.1093/emboj/cdg417PMC17580612912919Victorelli S., Passos J.F. Reactive Oxygen Species Detection in Senescent Cells. Methods Mol. Biol. 2019;1896:21–29.30474836Zhang B., Fu D., Xu Q., Cong X., Wu C., Zhong X., Ma Y., Lv Z., Chen F., Han L., et al. The senescence-associated secretory phenotype is potentiated by feedforward regulatory mechanisms involving Zscan4 and TAK1. Nat. Commun. 2018;9:1723. doi: 10.1038/s41467-018-04010-4.10.1038/s41467-018-04010-4PMC592822629712904Takikawa S., Ray C., Wang X., Shamis Y., Wu T.Y., Li X. Genomic imprinting is variably lost during reprogramming of mouse iPS cells. Stem Cell. Res. 2013;11:861–873. doi: 10.1016/j.scr.2013.05.011.10.1016/j.scr.2013.05.011PMC381555023832110Cattanach B.M., Beechey C.V., Peters J. Interactions between imprinting effects in the mouse. Genetics. 2004;168:397–413. doi: 10.1534/genetics.104.030064.10.1534/genetics.104.030064PMC144809515454552Wang H.X., Li T.Y., Kidder G.M. WNT2 regulates DNA synthesis in mouse granulosa cells through beta-catenin. Biol. Reprod. 2010;82:865–875. doi: 10.1095/biolreprod.109.080903.10.1095/biolreprod.109.080903PMC302500220107203Schlessinger K., Hall A., Tolwinski N. Wnt signaling pathways meet Rho GTPases. Genes. Dev. 2009;23:265–277. doi: 10.1101/gad.1760809.10.1101/gad.176080919204114Shen L., Zhou S., Glowacki J. Effects of age and gender on WNT gene expression in human bone marrow stromal cells. J. Cell. Biochem. 2009;106:337–343. doi: 10.1002/jcb.22010.10.1002/jcb.22010PMC445294919115259Ye X., Zerlanko B., Kennedy A., Banumathy G., Zhang R., Adams P.D. Downregulation of Wnt signaling is a trigger for formation of facultative heterochromatin and onset of cell senescence in primary human cells. Mol. Cell. 2007;27:183–196. doi: 10.1016/j.molcel.2007.05.034.10.1016/j.molcel.2007.05.034PMC269809617643369Shi X., Tian B., Ma C., Liu L., Zhang N., Na Y., Li J., Lu J., Qiao Y. GSK3beta activity is essential for senescence-associated heterochromatin foci (SAHF) formation induced by HMGA2 in WI38 cells. Am. J. Transl. Res. 2017;9:167–174.PMC525071328123643Feng Y., Wu L. Knockdown of eukaryotic translation initiation factor 3 subunit B inhibits cell proliferation and migration and promotes apoptosis by downregulating WNT signaling pathway in acute myeloid leukemia. Int. J. Clin. Exp. Pathol. 2020;13:99–106.PMC701336932055278Bhavanasi D., Klein P.S. Wnt Signaling in Normal and Malignant Stem Cells. Curr. Stem Cell. Rep. 2016;2:379–387. doi: 10.1007/s40778-016-0068-y.10.1007/s40778-016-0068-yPMC542367228503404Zhao H., Chen Y., Shao L., Xie M., Nie J., Qiu J., Zhao P., Ramezani H., Fu J., Ouyang H., et al. Airflow-Assisted 3D Bioprinting of Human Heterogeneous Microspheroidal Organoids with Microfluidic Nozzle. Small. 2018;14:e1802630. doi: 10.1002/smll.201802630.10.1002/smll.20180263030133151Ahadian S., Khademhosseini A. A Perspective on 3D Bioprinting in Tissue Regeneration. Biodes Manuf. 2018;1:157–160. doi: 10.1007/s42242-018-0020-3.10.1007/s42242-018-0020-3PMC642632330906618Shao L., Gao Q., Zhao H., Xie C., Fu J., Liu Z., Xiang M., He Y. Fiber-Based Mini Tissue with Morphology-Controllable GelMA Microfibers. Small. 2018;14:e1802187. doi: 10.1002/smll.201802187.10.1002/smll.20180218730253060Gresham R.C.H., Kumar D., Copp J., Lee M.A., Leach J.K. Characterization of Induction and Targeting of Senescent Mesenchymal Stromal Cells. Tissue Eng. Part. C Methods. 2022;28:239–249. doi: 10.1089/ten.tec.2022.0048.10.1089/ten.tec.2022.0048PMC924767935438548Zhou X., Tenaglio S., Esworthy T., Hann S.Y., Cui H., Webster T.J., Fenniri H., Zhang L.G. Three-Dimensional Printing Biologically Inspired DNA-Based Gradient Scaffolds for Cartilage Tissue Regeneration. ACS Appl. Mater. Interfaces. 2020;12:33219–33228. doi: 10.1021/acsami.0c07918.10.1021/acsami.0c0791832603082O’Callaghan N.J., Fenech M. A quantitative PCR method for measuring absolute telomere length. Biol. Proced. Online. 2011;13:3. doi: 10.1186/1480-9222-13-3.10.1186/1480-9222-13-3PMC304743421369534Szklarczyk D., Gable A.L., Nastou K.C., Lyon D., Kirsch R., Pyysalo S., Doncheva N.T., Legeay M., Fang T., Bork P., et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49:D605–D612. doi: 10.1093/nar/gkaa1074.10.1093/nar/gkaa1074PMC777900433237311
328653372022013120220131
1552-498110942021AprJournal of biomedical materials research. Part B, Applied biomaterialsJ Biomed Mater Res B Appl BiomaterEvaluation of osteogenic and antibacterial properties of strontium/silver-containing porous TiO2 coatings prepared by micro-arc oxidation.505516505-51610.1002/jbm.b.34719Ti and Ti alloys are bioinert materials and two frequent problems associated with them are bacterial infection and lack of osteogenic potential for rapid bone integration. To overcome the problems, the present study incorporated strontium (Sr) and silver (Ag) simultaneously into porous TiO2 coatings through a single-step technique, micro-arc oxidation (MAO). Incorporation of Sr and Ag brought no significant changes to coating micromorphology and physicochemical properties, but endowed TiO2 coatings with both strong antibacterial activity and osteogenic ability. Antibacterial activity increased with Ag contents in the coatings. When Ag content reached 0.58 wt%, the coating showed both excellent short-term (100.0%) and long-term (77.6%) antibacterial activities. Sr/Ag-containing coatings with 18.23 wt% Sr and 0.58 wt% Ag also presented good cytocompatibility for preosteoblast adhesion and proliferation, and promoted preosteoblast osteogenic differentiation both short-termly and long-termly. However, higher Ag content (1.29 wt%) showed toxic effects to preosteoblasts. In summary, MAO is a simple and effective way to incorporate Sr and Ag into porous TiO2 coatings and Sr/Ag-containing TiO2 coating with 18.5 wt% Sr and 0.58 wt% Ag has both good osteogenic activity and strong antibacterial capability short-termly and long-termly. Therefore, such coatings are valuable for clinical application to strengthen osseointegration and long-term high quality use of titanum implants.© 2020 Wiley Periodicals LLC.ZhangYang-YangYYDepartment of Oral and Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan, Hebei, China.ZhuYeYDepartment of Oral and Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan, Hebei, China.LuDa-ZhuangDZDepartment of Oral and Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan, Hebei, China.DongWeiWDepartment of Oral and Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan, Hebei, China.BiWen-JuanWJDepartment of Oral and Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan, Hebei, China.FengXiao-JieXJDepartment of Oral and Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan, Hebei, China.WenLi-MingLMDepartment of Oral and Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan, Hebei, China.SunHongHDepartment of Pathology, college of basic medicine, North China University of Science and Technology, Tangshan, Hebei, China.QiMeng-ChunMC0000-0001-5681-5282Department of Oral and Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan, Hebei, China.engJournal ArticleResearch Support, Non-U.S. Gov't20200831
United StatesJ Biomed Mater Res B Appl Biomater1012342381552-49730Anti-Bacterial Agents0Coated Materials, Biocompatible15FIX9V2JPtitanium dioxide3M4G523W1GSilverD1JT611TNETitaniumYZS2RPE8LEStrontiumIMAnti-Bacterial AgentspharmacologyCell Adhesiondrug effectsCell Divisiondrug effectsCell LineChemical PhenomenaCoated Materials, BiocompatiblepharmacologyHumansHydrophobic and Hydrophilic InteractionsMicrobial Sensitivity TestsOsteoblastsdrug effectsultrastructureOsteogenesisdrug effectsOxidation-ReductionPorositySilverpharmacologyStaphylococcus aureusdrug effectsStrontiumpharmacologySurface PropertiesTitaniumpharmacologyX-Ray Diffractionantibacterial propertymicro-arc oxidationosteogenic abilitysilverstronium
202021820208112020818202091602022216020209160ppublish3286533710.1002/jbm.b.34719REFERENCESLi YH, Yang C, Zhao H, Qu S, Li X, Li Y. New developments of Ti-based alloys for biomedical applications. Materials. 2014;7(3):1709-1800.Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater. 2008;1(1):30-42.Fielding GA, Roy M, Bandyopadhyay A, Bose S. Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings. Acta Biomater. 2012;8(8):3144-3152.He X, Zhang X, Bai L, et al. Antibacterial ability and osteogenic activity of porous Sr/ag-containing TiO2 coatings. Biomed Mater. 2016;11(4):45008.Campoccia D, Montanaro L, Arciola CR. The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials. 2006;27(11):2331-2339.Ferraris S, Spriano SM. Antibacterial titanium surfaces for medical implants. Mater Sci Eng C. 2016;61:965-978.Madi M, Htet M, Zakaria O, Alagl AS, Kasugai S. Re-osseointegration of dental implants after Periimplantitis treatments: a systematic review. Implant Dent. 2018;27(1):101-110.Kim DY, Kim M, Kim H, Koh Y, Kim H, Jang J. Formation of hydroxyapatite within porous TiO2 layer by micro-arc oxidation coupled with electrophoretic deposition. Acta Biomater. 2009;5(6):2196-2205.Li Y, Li Q, Zhu S, et al. The effect of strontium-substituted hydroxyapatite coating on implant fixation in ovariectomized rats. Biomaterials. 2010;31(34):9006-9014.Zhou R, Wei D, Cheng S, et al. Structure, MC3T3-E1 cell response, and osseointegration of macroporous titanium implants covered by a bioactive microarc oxidation coating with microporous structure. ACS Appl Mater Interfaces. 2014;6(7):4797-4811.Zhang E, Wang X, Chen M, Hou B. Effect of the existing form of cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti-cu alloys for biomedical application. Mater Sci Eng C. 2016;69:1210-1221.Hu H, Zhang W, Qiao Y, Jiang X, Liu X, Ding C. Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomater. 2012;8(2):904-915.Jonathan B, Christopher N, Ulrich S, Robert P, La RRM, Shafer WM. Antimicrobial activity of carbon monoxide-releasing molecule [Mn(CO)3(tpa-κ3N)]Br versus multidrug-resistant isolates of avian pathogenic Escherichia coli and its synergy with colistin. Plos One. 2017;12(10):e0186359.Zhang X, Wu H, Geng Z, et al. Microstructure and cytotoxicity evaluation of duplex-treated silver-containing antibacterial TiO2 coatings. Mater Ence Eng C. 2014;45:402-410.Nguyen TT, Jang Y, Lee M, Bae T. Effect of strontium doping on the biocompatibility of calcium phosphate-coated titanium substrates. J Appl Biomater Functional Mater. 2019;17(1):2280800019826517.Zhao L, Wang H, Huo K, et al. The osteogenic activity of strontium loaded titania nanotube arrays on titanium substrates. Biomaterials. 2013;34(1):19-29.Chen M, Yang L, Zhang L, et al. Effect of nano/micro-ag compound particles on the bio-corrosion, antibacterial properties and cell biocompatibility of Ti-ag alloys. Mater Ence Eng C Mater Biol Appl. 2017;75:906-917.Forster H, Marotta JS, Heseltine K, Milner R, Jani SC. Bactericidal activity of antimicrobial coated polyurethane sleeves for external fixation pins. J Orthop Res. 2004;22(3):671-677.Zhang Q, Wang Y, Zhang W, et al. In situ assembly of well-dispersed ag nanoparticles on the surface of polylactic acid-au@polydopamine nanofibers for antimicrobial applications. Colloids Surf B Biointerfaces. 2019;184:110506.Yu SB, Kim HJ, Kang HM, Park BS, Lee JH, Kim IR. Cordycepin accelerates osteoblast mineralization and attenuates osteoclast differentiation in vitro. Evid Based Complement Alternat Med. 2018;2018:1-10.Zhang BB, Wang BL, Li L, Zheng YF. Corrosion behavior of Ti-5Ag alloy with and without thermal oxidation in artificial saliva solution. Dental Mater Official Pub Academy Dental Mater. 2011;27(3):214-220.Huang CH, Yoshimura M. Direct ceramic coating of calcium phosphate doped with strontium via reactive growing integration layer method on α-Ti alloy. Entific Reports. 2020;10(1):10602.Feng QL, Wu J, Chen G, Cui F, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;52(4):662-668.Compton SM, Clark D, Chan S, Kuc I, Wubie B, Levin L. Dental implants in the elderly population: a long-term follow-up. Int J Oral Maxillofacial Implants. 2017;32(1):164-170.Darouiche RO. Anti-infective efficacy of silver-coated medical prostheses. Clin Infect Dis. 1999;29(6):1371-1377.Jordana F, Susbielles L, Colatparros J. Periimplantitis and implant body roughness: a systematic review of literature. Implant Dent. 2018;27(6):672-681.Setzer FC, Kim S. Comparison of long-term survival of implants and Endodontically treated teeth. J Dent Res. 2014;93(1):19-26.Agnihotri S, Mukherji S, Mukherji S. Immobilized silver nanoparticles enhance contact killing and show highest efficacy: elucidation of the mechanism of bactericidal action of silver. Nanoscale. 2013;5(16):7328-7340.Cho KH, Park JE, Osaka T, Park SG. The study of antimicrobial activity and preservative effects of nanosilver ingredigent. Electrochim Acta. 2005;51(5):956-960.Madi M, Zakaria O, Ichinose S, Kasugai S. Effect of induced Periimplantitis on dental implants with and without ultrathin hydroxyapatite coating. Implant Dent. 2016;25(1):39-46.Uhm S, Kwon J, Song D, et al. Long-term antibacterial performance and bioactivity of plasma-engineered ag-NPs/TiO₂. J Biomed Nanotechnol. 2016;12(10):1890-1906.Li F, Jiang X, Shao Z, Zhu D, Luo Z. Microstructure and mechanical properties of Nano-carbon reinforced titanium matrix/hydroxyapatite biocomposites prepared by spark plasma sintering. Nanomaterials. 2018;8(9):729.Liaw K, Delfini RH, Abrahams JJ. Dental implant complications. Seminars Ultrasound Ct Mri. 2015;36(5):427-433.Renvert S, Polyzois I, Maguire R. Re-osseointegration on previously contaminated surfaces: a systematic review. Clin Oral Implants Res. 2009;20:216-227.Peng S, Liu XS, Huang S, et al. The cross-talk between osteoclasts and osteoblasts in response to strontium treatment: involvement of osteoprotegerin. Bone. 2011;49(6):1290-1298.Offermanns V, Andersen OZ, Riede G, et al. Effect of strontium surface-functionalized implants on early and late osseointegration: a histological. Spectrometric Tomographic Evaluation Acta Biomaterialia. 2018;69:385-394.
326181002021110820211108
1552-498110882020NovJournal of biomedical materials research. Part B, Applied biomaterialsJ Biomed Mater Res B Appl BiomaterEffectiveness of strontium-doped brushite, bovine-derived hydroxyapatite and synthetic hydroxyapatite in rabbit sinus augmentation with simultaneous implant installation.340234123402-341210.1002/jbm.b.34675Various bone substitutes have been applied in sinus augmentation (SA) to overcome insufficient bone height at the posterior maxilla region caused by pneumatized sinus and severe alveolar bone resorption after teeth loss. However, their effectiveness in SA needs to be further elucidated. In this study, strontium-doped brushite (Sr-DCPD), a new bone substitute, together with bovine-derived hydroxyapatite (bHA) and synthetic hydroxyapatite (sHA) was used in rabbit maxillary SA with simultaneous implant installation. The sinus space-keeping capacity, resorption rate, osteoconductivity, and mechanical properties of regenerated bone, were evaluated by micro-computed tomography (CT), histological analysis, and mechanical testing. Sr-DCPD exhibited the best osteoconductivity and new bone formation (<4 weeks), but its final bone regeneration and removal torque of implants at week 12 were the lowest, mainly due to its poor space-keeping capacity and fast resorption. bHA exhibited the best space-keeping capacity and slowest resorption rate, but relative lower final bone volume and mechanical properties, while sHA showed good space-keeping capacity, slower resorption rate, and the best final bone formation and mechanical properties. sHA was most effective for SA and bHA was also an acceptable bone substitute; however, Sr-DCPD was least effective and not suitable in SA by itself.© 2020 Wiley Periodicals LLC.LuDa-ZhuangDZDepartment of Oral & Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan City, Hebei Province, China.ZhangYan-BoYBDepartment of stomatology, Affiliated hospital of Chengde Medical College, Chengde City, Hebei Province, China.DongWeiWDepartment of Oral & Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan City, Hebei Province, China.BiWen-JuanWJDepartment of Oral & Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan City, Hebei Province, China.FengXiao-JieXJDepartment of Oral & Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan City, Hebei Province, China.WenLi-MingLMDepartment of Oral & Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan City, Hebei Province, China.SunHongHDepartment of pathology, college of basic medicine, North China University of Science and Technology, Tangshan City, Hebei Province, China.ChenHuiHDepartment of Oral & Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan City, Hebei Province, China.ZangLu-YangLYDepartment of Endocrinology (Section 1), Tangshan Gongren Hospital, Tangshan City, Hebei Province, China.QiMeng-ChunMC0000-0001-5681-5282Department of Oral & Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan City, Hebei Province, China.engJournal ArticleResearch Support, Non-U.S. Gov't20200703
United StatesJ Biomed Mater Res B Appl Biomater1012342381552-49730Biocompatible Materials0Bone Substitutes0Calcium Phosphates91D9GV0Z28DurapatiteO7TSZ97GEPcalcium phosphate, dibasic, dihydrateYZS2RPE8LEStrontiumIMAnimalsBiocompatible MaterialsBone ConductionBone Regenerationdrug effectsBone ResorptionBone SubstituteschemistryCalcium PhosphateschemistrypharmacologyCattleDurapatitechemistrypharmacologyHumansMaleMaxillary SinussurgeryMechanical PhenomenaMiddle AgedOsteogenesisdrug effectsProstheses and ImplantsRabbitsSinus Floor AugmentationmethodsStrontiumchemistrypharmacologyX-Ray Microtomographybovine-derived hydroxyapatitedental implantssinus augmentationstrontium-doped brushitesynthetic hydroxyapatite
20202132020652020692020746020211196020207460ppublish3261810010.1002/jbm.b.34675REFERENCESBaier, M., Staudt, P., Klein, R., Sommer, U., Wenz, R., Grafe, I., … Kasperk, C. (2013). Strontium enhances osseointegration of calcium phosphate cement: A histomorphometric pilot study in ovariectomized rats. Journal of Orthopaedic Surgery and Research, 8, 16.Browaeys, H., Bouvry, P., & De Bruyn, H. (2007). A literature review on biomaterials in sinus augmentation procedures. Clinical Implant Dentistry and Related Research, 9, 166-177.Carvalho, C. M., Carvalho, L. F., Costa, L. J., Sa, M. J., Figueiredo, C. R., & Azevedo, A. S. (2010). Titanium implants: A removal torque study in osteopenic rabbits. Indian Journal of Dental Research, 21, 349-352.Caverzasio, J., & Thouverey, C. (2011). Activation of FGF receptors is a new mechanism by which strontium ranelate induces osteoblastic cell growth. Cellular Physiology and Biochemistry, 27, 243-250.Chaves, M. D., de Souza Nunes, L. S., de Oliveira, R. V., Holgado, L. A., Filho, H. N., Matsumoto, M. A., & Ribeiro, D. A. (2012). Bovine hydroxyapatite bio-Oss(®) induces osteocalcin, RANK-L and osteoprotegerin expression in sinus lift of rabbits. Journal of Cranio-Maxillo-Facial Surgery, 40, e315-e320.Choi, Y., Yun, J. H., Kim, C. S., Choi, S. H., Chai, J. K., & Jung, U. W. (2012). Sinus augmentation using absorbable collagen sponge loaded with Escherichia coli-expressed recombinant human bone morphogenetic protein 2 in a standardized rabbit sinus model: A radiographic and histologic analysis. Clinical Oral Implants Research, 23, 682-689.Cordaro, L., Bosshardt, D. D., Palattella, P., Rao, W., Serino, G., & Chiapasco, M. (2008). Maxillary sinus grafting with bio-Oss or Straumann bone ceramic: Histomorphometric results from a randomized controlled multicenter clinical trial. Clinical Oral Implants Research, 19, 796-803.De Santis, E., Lang, N. P., Ferreira, S., Rangel Garcia, I., Jr., Caneva, M., & Botticelli, D. (2017). Healing at implants installed concurrently to maxillary sinus floor elevation with bio-Oss(R) or autologous bone grafts. A histo-morphometric study in rabbits. Clinical Oral Implants Research, 28, 503-511.Esposito, M., Felice, P., & Worthington, H. V. (2014). Interventions for replacing missing teeth: Augmentation procedures of the maxillary sinus. Cochrane Database of Systematic Reviews, 13(5), CD008397.Habibovic, P., & de Groot, K. (2007). Osteoinductive biomaterials-properties and relevance in bone repair. Journal of Tissue Engineering and Regenerative Medicine, 1, 25-32.Ince, A., Schutze, N., Hendrich, C., Thull, R., Eulert, J., & Lohr, J. F. (2008). In vitro investigation of orthopedic titanium-coated and brushite-coated surfaces using human osteoblasts in the presence of gentamycin. The Journal of Arthroplasty, 23, 762-771.Kim, H. R., Choi, B. H., Xuan, F., & Jeong, S. M. (2010). The use of autologous venous blood for maxillary sinus floor augmentation in conjunction with sinus membrane elevation: An experimental study. Clinical Oral Implants Research, 21, 346-349.Kim, M. S., Kwon, J. Y., Lee, J. S., Song, J. S., Choi, S. H., & Jung, U. W. (2014). Low-dose recombinant human bone morphogenetic protein-2 to enhance the osteogenic potential of the Schneiderian membrane in the early healing phase: in vitro and in vivo studies. Journal of Oral and Maxillofacial Surgery, 72, 1480-1494.Kim, S. W., Lee, I. K., Yun, K. I., Kim, C. H., & Park, J. U. (2009). Adult stem cells derived from human maxillary sinus membrane and their osteogenic differentiation. The International Journal of Oral & Maxillofacial Implants, 24, 991-998.Kim, Y. S., Kim, S. H., Kim, K. H., Jhin, M. J., Kim, W. K., Lee, Y. K., … Lee, Y. M. (2012). Rabbit maxillary sinus augmentation model with simultaneous implant placement: Differential responses to the graft materials. Journal of Periodontal and Implant Science, 42, 204-211.Lambert, F., Bacevic, M., Layrolle, P., Schupbach, P., Drion, P., & Rompen, E. (2017). Impact of biomaterial microtopography on bone regeneration: Comparison of three hydroxyapatites. Clinical Oral Implants Research, 28, e201-e207.Lambert, F., Leonard, A., Drion, P., Sourice, S., Layrolle, P., & Rompen, E. (2011). Influence of space-filling materials in subantral bone augmentation: Blood clot vs. autogenous bone chips vs. bovine hydroxyapatite. Clinical Oral Implants Research, 22, 538-545.Lambert, F., Leonard, A., Lecloux, G., Sourice, S., Pilet, P., & Rompen, E. (2013). A comparison of three calcium phosphate-based space fillers in sinus elevation: A study in rabbits. The International Journal of Oral & Maxillofacial Implants, 28, 393-402.LeGeros, R. Z. (2008). Calcium phosphate-based osteoinductive materials. Chemical Reviews, 108, 4742-4753.Liang, Y., Li, H., Xu, J., Li, X., Qi, M., & Hu, M. (2014). Morphology, composition, and bioactivity of strontium-doped brushite coatings deposited on titanium implants via electrochemical deposition. International Journal of Molecular Sciences, 15, 9952-9962.Lim, H. C., Hong, J. Y., Lee, J. S., Jung, U. W., & Choi, S. H. (2016). Late-term healing in an augmented sinus with different ratios of biphasic calcium phosphate: A pilot study using a rabbit sinus model. Journal of Periodontal and Implant Science, 46, 57-69.Lim, H. C., Zhang, M. L., Lee, J. S., Jung, U. W., & Choi, S. H. (2015). Effect of different hydroxyapatite:Beta-tricalcium phosphate ratios on the osteoconductivity of biphasic calcium phosphate in the rabbit sinus model. The International Journal of Oral & Maxillofacial Implants, 30, 65-72.Narayanan, R., Seshadri, S. K., Kwon, T. Y., & Kim, K. H. (2008). Calcium phosphate-based coatings on titanium and its alloys. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 85, 279-299.Ni, G. X., Shu, B., Huang, G., Lu, W. W., & Pan, H. B. (2012). The effect of strontium incorporation into hydroxyapatites on their physical and biological properties. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 100, 562-568.Norton, M. R., Odell, E. W., Thompson, I. D., & Cook, R. J. (2003). Efficacy of bovine bone mineral for alveolar augmentation: A human histologic study. Clinical Oral Implants Research, 14, 775-783.Ohura, K., Bohner, M., Hardouin, P., Lemaitre, J., Pasquier, G., & Flautre, B. (1996). Resorption of, and bone formation from, new beta-tricalcium phosphate-monocalcium phosphate cements: An in vivo study. Journal of Biomedical Materials Research, 30, 193-200.Orsini, G., Traini, T., Scarano, A., Degidi, M., Perrotti, V., Piccirilli, M., & Piattelli, A. (2005). Maxillary sinus augmentation with bio-Oss particles: A light, scanning, and transmission electron microscopy study in man. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 74, 448-457.Owen, G. R., Dard, M., & Larjava, H. (2018). Hydoxyapatite/beta-tricalcium phosphate biphasic ceramics as regenerative material for the repair of complex bone defects. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 106, 2493-2512.Raja, S. V. (2009). Management of the posterior maxilla with sinus lift: Review of techniques. Journal of Oral and Maxillofacial Surgery, 67, 1730-1734.Rouahi, M., Champion, E., Gallet, O., Jada, A., & Anselme, K. (2006). Physico-chemical characteristics and protein adsorption potential of hydroxyapatite particles: Influence on in vitro biocompatibility of ceramics after sintering. Colloids and Surfaces. B, Biointerfaces, 47, 10-19.Rouahi, M., Gallet, O., Champion, E., Dentzer, J., Hardouin, P., & Anselme, K. (2006). Influence of hydroxyapatite microstructure on human bone cell response. Journal of Biomedical Materials Research. Part A, 78, 222-235.Sbordone, L., Toti, P., Menchini-Fabris, G. B., Sbordone, C., Piombino, P., & Guidetti, F. (2009). Volume changes of autogenous bone grafts after alveolar ridge augmentation of atrophic maxillae and mandibles. International Journal of Oral and Maxillofacial Surgery, 38, 1059-1065.Sheikh, Z., Abdallah, M. N., Hanafi, A. A., Misbahuddin, S., Rashid, H., & Glogauer, M. (2015). Mechanisms of in vivo degradation and resorption of calcium phosphate based biomaterials. Materials (Basel), 8, 7913-7925.Srouji, S., Kizhner, T., Ben David, D., Riminucci, M., Bianco, P., & Livne, E. (2009). The Schneiderian membrane contains osteoprogenitor cells: in vivo and in vitro study. Calcified Tissue International, 84, 138-145.Tadier, S., Bareille, R., Siadous, R., Marsan, O., Charvillat, C., Cazalbou, S., … Combes, C. (2012). Strontium-loaded mineral bone cements as sustained release systems: Compositions, release properties, and effects on human osteoprogenitor cells. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 100, 378-390.Tadjoedin, E. S., de Lange, G. L., Bronckers, A. L., Lyaruu, D. M., & Burger, E. H. (2003). Deproteinized cancellous bovine bone (bio-Oss) as bone substitute for sinus floor elevation. A retrospective, histomorphometrical study of five cases. Journal of Clinical Periodontology, 30, 261-270.Tosta, M., Cortes, A. R., Corrêa, L., Pinto Ddos, S., Jr., Tumenas, I., & Katchburian, E. (2013). Histologic and histomorphometric evaluation of a synthetic bone substitute for maxillary sinus grafting in humans. Clinical Oral Implants Research, 24, 866-870.Trbakovic, A., Hedenqvist, P., Mellgren, T., Ley, C., Hilborn, J., Ossipov, D., … Thor, A. (2018). A new synthetic granular calcium phosphate compound induces new bone in a sinus lift rabbit model. Journal of Dentistry, 70, 31-39.Valiense, H., Barreto, M., Resende, R. F., Alves, A. T., Rossi, A. M., Mavropoulos, E., … Calasans Maia, M. D. (2016). In vitro and in vivo evaluation of strontium-containing nanostructured carbonated hydroxyapatite/sodium alginate for sinus lift in rabbits. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 104, 274-282.Wallace, S. S., & Froum, S. J. (2003). Effect of maxillary sinus augmentation on the survival of endosseous dental implants. A systematic review. Annals of Periodontology, 8, 328-343.Wanschitz, F., Figl, M., Wagner, A., & Rolf, E. (2006). Measurement of volume changes after sinus floor augmentation with a phycogenic hydroxyapatite. The International Journal of Oral & Maxillofacial Implants, 21, 433-438.Xia, L., Xu, Y., Wei, J., Zeng, D., Ye, D., Liu, C., … Jiang, X. (2011). Maxillary sinus floor elevation using a tissue-engineered bone with rhBMP-2-loaded porous calcium phosphate cement scaffold and bone marrow stromal cells in rabbits. Cells, Tissues, Organs, 194, 481-493.Yildirim, M., Spiekermann, H., Biesterfeld, S., & Edelhoff, D. (2000). Maxillary sinus augmentation using xenogenic bone substitute material bio-Oss in combination with venous blood. A histologic and histomorphometric study in humans. Clinical Oral Implants Research, 11, 217-229.
321733492021052720210527
1872-80575082020May15Molecular and cellular endocrinologyMol Cell EndocrinolCaMKII(δ) regulates osteoclastogenesis through ERK, JNK, and p38 MAPKs and CREB signalling pathway.11079111079110.1016/j.mce.2020.110791S0303-7207(20)30091-5Calcium/calmodulin-dependent protein kinases (CaMKs) are a group of important molecules mediating calcium signal transmission and have been proved to participate in osteoclastogenesis regulation. CaMKII, a subtype of CaMKs is expressed during osteoclast differentiation, but its role in osteoclastogenesis regulation remains controversial. In the present study, we identified that both mRNA and protein levels of CaMKII (δ) were upregulated in a time-dependent manner during osteoclast differentiation. CaMKII (δ) gene silencing significantly inhibited osteoclast formation, bone resorption, and expression of osteoclast-related genes, including nuclear factor of activated T cells c1 (NFATc1), tartrate-resistant acid phosphatase (TRAP), and c-Src. Furthermore, CaMKII (δ) gene silencing downregulated phosphorylation of mitogen-activated protein kinases (MAPKs), including JNK, ERK, and p38, which were transiently activated by RANKL. Specific inhibitors of ERK, JNK, and p38 also markedly inhibited expression of osteoclast-related genes, osteoclast formation, and bone resorption like CaMKII (δ) gene silencing. Additionally, CaMKII (δ) gene silencing also suppressed RANKL-triggered CREB phosphorylation. Collectively, these data demonstrate the important role of CaMKII (δ) in osteoclastogenesis regulation through JNK, ERK, and p38 MAPKs and CREB pathway.Copyright © 2020 Elsevier B.V. All rights reserved.LuDa-ZhuangDZDepartment of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, 21, Bohai Road, District of Caofeidian, Tangshan City, 063210, Hebei Province, PR China.DongWeiWDepartment of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, 21, Bohai Road, District of Caofeidian, Tangshan City, 063210, Hebei Province, PR China.FengXiao-JieXJDepartment of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, 21, Bohai Road, District of Caofeidian, Tangshan City, 063210, Hebei Province, PR China.ChenHuiHDepartment of Oral & Maxillofacial Surgery, Affiliated Hospital of North China University of Science and Technology, Tangshan City, 063000, Hebei Province, PR China.LiuJuan-JuanJJDepartment of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, 21, Bohai Road, District of Caofeidian, Tangshan City, 063210, Hebei Province, PR China.WangHuiHDepartment of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, 21, Bohai Road, District of Caofeidian, Tangshan City, 063210, Hebei Province, PR China.ZangLu-YangLYDepartment of Endocrinology (Section 1), Tangshan Gongren Hospital, Tangshan City, 063000, Hebei Province, PR China.QiMeng-ChunMCDepartment of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, 21, Bohai Road, District of Caofeidian, Tangshan City, 063210, Hebei Province, PR China. Electronic address: qimengchun@163.com.engJournal ArticleResearch Support, Non-U.S. Gov't20200312
IrelandMol Cell Endocrinol75008440303-72070Cyclic AMP Response Element-Binding Protein0Protein Kinase Inhibitors0RANK LigandEC 2.7.11.17Calcium-Calmodulin-Dependent Protein Kinase Type 2EC 2.7.11.24Extracellular Signal-Regulated MAP KinasesEC 2.7.11.24JNK Mitogen-Activated Protein KinasesEC 2.7.11.24p38 Mitogen-Activated Protein KinasesEC 3.1.3.2Tartrate-Resistant Acid PhosphataseIMAnimalsBone ResorptiongeneticspathologyCalcium-Calmodulin-Dependent Protein Kinase Type 2metabolismCell Differentiationdrug effectsCyclic AMP Response Element-Binding ProteinmetabolismDown-Regulationdrug effectsgeneticsExtracellular Signal-Regulated MAP KinasesmetabolismGene Silencingdrug effectsJNK Mitogen-Activated Protein KinasesmetabolismMiceOsteoclastscytologydrug effectsmetabolismOsteogenesisdrug effectsPhosphorylationdrug effectsProtein Kinase InhibitorspharmacologyRANK LigandpharmacologyRAW 264.7 CellsSignal Transductiondrug effectsTartrate-Resistant Acid PhosphatasemetabolismTime Factorsp38 Mitogen-Activated Protein KinasesmetabolismCalcium/calmodulin-dependent protein kinasesExtracellular signal-regulated kinasesOsteoclastc-Jun amino-terminal kinasescAMP response element binding proteinp38Declaration of competing interest The authors declare no conflicts of interest related to this study.
2019992020122020310202031760202152860202031760ppublish3217334910.1016/j.mce.2020.110791S0303-7207(20)30091-5
trying2...
Publications by Dazhuang Lu | LitMetric

Publications by authors named "Dazhuang Lu"

The periosteum plays a critical role in bone repair and is significantly influenced by the surrounding immune microenvironment. In this study, we employed 10× single-cell RNA sequencing to create a detailed cellular atlas of the swine cranial periosteum, highlighting the cellular dynamics and interactions essential for cranial bone injury repair. We noted that such injuries lead to an increase in M2 macrophages, which are key in modulating the periosteum's immune response and driving the bone regeneration process.

View Article and Find Full Text PDF

While previous studies have demonstrated the role of ubiquitin-conjugating enzyme 2C (UBE2C) in promoting β-cell proliferation and cancer cell lineage expansion, its specific function and mechanism in bone marrow mesenchymal stem/stromal cells (BMSCs) growth and differentiation remain poorly understood. Our findings indicate that mice with conditional Ube2c deletions in BMSCs and osteoblasts exhibit reduced skeletal bone mass and impaired bone repair. A significant reduction in the proliferative capacity of BMSCs was observed in conditional Ube2c knockout mice, with no effect on apoptosis.

View Article and Find Full Text PDF
Article Synopsis
  • Osteoporosis is a bone disease that makes bones weak, and some medicines for it can cause side effects.
  • The study tested a traditional Chinese medicine called cinobufotalin (CB) to see if it can help prevent bone loss.
  • Results showed that CB can help keep bones strong and work well with certain biological pathways to improve the growth of bone cells.
View Article and Find Full Text PDF

Primary bone mesenchymal stem cells (BMSCs) gradually lose stemness during in vitro expansion, which significantly affects the cell therapeutic effects. Here, we chose murine PαS (SCA-1PDGFRαCD45TER119) cells as representative of BMSCs and aimed to explore the premium culture conditions for PαS cells. Freshly isolated (fresh) PαS cells were obtained from the limbs of C57/6N mice by fluorescence-activated cell sorting (FACS).

View Article and Find Full Text PDF

Bone marrow stem cells (BMSCs) are a promising source of seed cells in bone tissue engineering, which needs a great quantity of cells. Cell senescence occurs as they are passaged, which could affect the therapeutic effects of cells. Therefore, this study aims to explore the transcriptomic differences among the uncultured and passaged cells, finding a practical target gene for anti-aging.

View Article and Find Full Text PDF

Ti and Ti alloys are bioinert materials and two frequent problems associated with them are bacterial infection and lack of osteogenic potential for rapid bone integration. To overcome the problems, the present study incorporated strontium (Sr) and silver (Ag) simultaneously into porous TiO coatings through a single-step technique, micro-arc oxidation (MAO). Incorporation of Sr and Ag brought no significant changes to coating micromorphology and physicochemical properties, but endowed TiO coatings with both strong antibacterial activity and osteogenic ability.

View Article and Find Full Text PDF

Various bone substitutes have been applied in sinus augmentation (SA) to overcome insufficient bone height at the posterior maxilla region caused by pneumatized sinus and severe alveolar bone resorption after teeth loss. However, their effectiveness in SA needs to be further elucidated. In this study, strontium-doped brushite (Sr-DCPD), a new bone substitute, together with bovine-derived hydroxyapatite (bHA) and synthetic hydroxyapatite (sHA) was used in rabbit maxillary SA with simultaneous implant installation.

View Article and Find Full Text PDF

Calcium/calmodulin-dependent protein kinases (CaMKs) are a group of important molecules mediating calcium signal transmission and have been proved to participate in osteoclastogenesis regulation. CaMKII, a subtype of CaMKs is expressed during osteoclast differentiation, but its role in osteoclastogenesis regulation remains controversial. In the present study, we identified that both mRNA and protein levels of CaMKII (δ) were upregulated in a time-dependent manner during osteoclast differentiation.

View Article and Find Full Text PDF