In situ conversion is the most potential technology for efficient and clean development of oil shale, and a downhole electric heater is key equipment for clean, efficient, and low-carbon in situ conversion. Three electric heating rods with different diameters are used to explore their influence on heater performances. The simulation results indicate that increasing the diameter of the heating rod helps to increase the minimum and maximum velocity of shell-side air, and the maximum velocity of H110-24 is 16.
View Article and Find Full Text PDFThe strong reservoir heterogeneity and complex microscopic pore structure in the Linxing area make it prone to water block damage during imbibition development. In order to explore the influence of reservoir microscopic characteristics on imbibition efficiency, taking the tight sandstone gas reservoir in the Linxing area of Ordos Basin as an example, the heterogeneity of the tight sandstone reservoir in the study area is characterized in terms of physical and chemical characteristics as well as the microscopic pore structure. Using nuclear magnetic resonance, high-pressure mercury pressure, and other testing methods, spontaneous seepage experiments in real sandstone were carried out to study the distribution law of different pore structures and seepage characteristics at different times and to systematically evaluate the microscopic pore characteristics of dense sandstone reservoirs and the factors affecting seepage and suction.
View Article and Find Full Text PDF