Publications by authors named "Dayton J Goodell"

N-methyl-D-aspartate (NMDA)-type ionotropic glutamate receptors have essential roles in neurotransmission and synaptic plasticity. Previously, we identified an evolutionarily conserved protein, NRAP-1, that is required for NMDA receptor (NMDAR) function in C. elegans.

View Article and Find Full Text PDF

The death-associated protein kinase 1 (DAPK1) has recently been shown to have a physiological function in long-term depression (LTD) of glutamatergic synapses: acute inhibition of DAPK1 blocked the LTD that is normally seen at the hippocampal CA1 synapse in young mice, and a pharmacogenetic combination approach showed that this specifically required DAPK1-mediated suppression of postsynaptic Ca/calmodulin-dependent protein kinase II binding to the NMDA-type glutamate receptor (NMDAR) subunit GluN2B during LTD stimuli. Surprisingly, we found here that genetic deletion of DAPK1 (in DAPK1 mice) did not reduce LTD. Paired pulse facilitation experiments indicated a presynaptic compensation mechanism: in contrast to wild-type mice, LTD stimuli in DAPK1 mice decreased presynaptic release probability.

View Article and Find Full Text PDF
Article Synopsis
  • DAPK1 and CaMKII both bind to GluN2B, which is crucial for mediating ischemic cell death, but their binding is mutually exclusive.
  • Mutating a specific region on GluN2B (L1298A/R1300Q) protects neurons from death after cardiac arrest by preventing CaMKII binding without affecting DAPK1.
  • During ischemia, CaMKII accumulates at synapses and is essential for neuronal death, while DAPK1 associates with extra-synaptic GluN2B, indicating different roles for these proteins in cell death mechanisms.
View Article and Find Full Text PDF

CaMKIIα is a central mediator of bidirectional synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD). To study how CaMKIIα movement during plasticity is affected by soluble amyloid-β peptide oligomers (Aβ), we used FingR intrabodies to simultaneously image endogenous CaMKIIα and markers for excitatory versus inhibitory synapses in live neurons. Aβ blocks LTP-stimulus-induced CaMKIIα accumulation at excitatory synapses.

View Article and Find Full Text PDF

Both long-term potentiation (LTP) and depression (LTD) of excitatory synapse strength require the Ca/calmodulin (CaM)-dependent protein kinase II (CaMKII) and its autonomous activity generated by Thr-286 autophosphorylation. Additionally, LTP and LTD are correlated with dendritic spine enlargement and shrinkage that are accompanied by the synaptic accumulation or removal, respectively, of the AMPA-receptor regulatory scaffold protein A-kinase anchoring protein (AKAP) 79/150. We show here that the spine shrinkage associated with LTD indeed requires synaptic AKAP79/150 removal, which in turn requires CaMKII activity.

View Article and Find Full Text PDF

The death-associated protein kinase 1 (DAPK1) is a potent mediator of neuronal cell death. Here, we find that DAPK1 also functions in synaptic plasticity by regulating the Ca/calmodulin (CaM)-dependent protein kinase II (CaMKII). CaMKII and T286 autophosphorylation are required for both long-term potentiation (LTP) and depression (LTD), two opposing forms of synaptic plasticity underlying learning, memory, and cognition.

View Article and Find Full Text PDF

The Ca/calmodulin-dependent protein kinase II (CaMKII) is a major mediator of long-term potentiation (LTP) and depression (LTD), two opposing forms of synaptic plasticity underlying learning, memory and cognition. The heterozygous CaMKIIα isoform KO (CaMKIIα) mice have a schizophrenia-related phenotype, including impaired working memory. Here, we examined synaptic strength and plasticity in two brain areas implicated in working memory, hippocampus CA1 and medial prefrontal cortex (mPFC).

View Article and Find Full Text PDF

Post-weaning social isolation (PSI) has been shown to increase aggressive behavior and alter medial prefrontal cortex (mPFC) function in social species such as rats. Here we developed a novel escapable social interaction test (ESIT) allowing for the quantification of escape and social behaviors in addition to mPFC activation in response to an aggressive or nonaggressive stimulus rat. Male rats were exposed to 3 weeks of PSI (ISO) or group (GRP) housing, and exposed to 3 trials, with either no trial, all trials, or the last trial only with a stimulus rat.

View Article and Find Full Text PDF

Early life adversity has been related to a number of psychological disorders including mood and other disorders that can manifest as inappropriate or aggressive responses to social challenges. The present study used post-weaning social isolation (PSI) in rats, a model of early life adversity, to examine its effects on Fos protein expression produced by exposure to a novel social encounter. We have previously reported that the social encounter-induced increase in Fos expression in the medial prefrontal cortex observed in group-housed controls (GRP) was attenuated in rats that had experienced PSI.

View Article and Find Full Text PDF

The Ca(2+) /calmodulin-dependent protein kinase II (CaMKII) forms 12meric holoenzymes. These holoenzymes cluster into larger aggregates within neurons under ischemic conditions and in vitro when ischemic conditions are mimicked. This aggregation is thought to be mediated by interaction between the regulatory domain of one kinase subunit with the T-site of another kinase subunit in a different holoenzyme, an interaction that requires stimulation by Ca(2+) /CaM and nucleotide for its induction.

View Article and Find Full Text PDF

Binding of the Ca2+/calmodulin(CaM)-dependent protein kinase II (CaMKII) to the NMDA-type glutamate receptor (NMDAR) subunit GluN2B controls long-term potentiation (LTP), a form of synaptic plasticity thought to underlie learning and memory. Regulation of this interaction is well-studied biochemically, but not under conditions that mimic the macromolecular crowding found within cells. Notably, previous molecular crowding experiments with lysozyme indicated an effect on the CaMKII holoenzyme conformation.

View Article and Find Full Text PDF

Neuroinflammation is a component of secondary injury following traumatic brain injury (TBI) that can persist beyond the acute phase. Leukotrienes are potent, pro-inflammatory lipid mediators generated from membrane phospholipids. In the absence of injury, leukotrienes are undetectable in the brain, but after trauma they are rapidly synthesized by a transcellular event involving infiltrating neutrophils and endogenous brain cells.

View Article and Find Full Text PDF

Rationale: Social interaction during drug exposure can potentiate cocaine reward. Isolation rearing (ISO) during adolescence increases social interaction and may amplify this potentiation.

Objectives: The objectives of this study are to determine whether ISO alters conditioned place preference (CPP) for cocaine when combined with a social cue and to determine whether ISO alters the effects of cocaine when combined with social cue on nucleus accumbens shell (NAcS) dopamine (DA) and serotonin (5-HT).

View Article and Find Full Text PDF