Publications by authors named "Dayong Ning"

The accumulation of separated out impurities from pipeline transported medium onto the pipe wall is a major cause of downtime maintenance of oil and gas production systems. To regularly scrub off wall-mounted debris and probe the severity, pipeline inspection gauges (PIG) are the state-of-the-art tools developed for the task, using the pressure differential across the device as the driving force, and tag-along sensing equipment for wall defects measurement. Currently, the PIG propulsion and sensing tasks are realized by separate compartments, limited to large diameter operations.

View Article and Find Full Text PDF

Considering the further exploration of the ocean, the requirements for deep-sea operation equipment have increased. Many problems existing in the widely used deep-sea hydraulic system have become increasingly prominent. Compared with the traditional deep-sea hydraulic system, actuators using a paraffin phase change material (PCM) have incomparable advantages, including lightweight structure, low energy consumption, high adaptability to the deep sea, and good biocompatibility.

View Article and Find Full Text PDF

In this paper, coating removal characteristics of water jet by micro jet flow affected by cleaning parameters is analyzed. Numerical simulation of fluid field calculates the velocity and pressure distribution of a water jet impinging on a rigid wall, which is used for design experiments of coating removal affected by jet pressure, traversal speed, and repeated impacting times. The removal width is used as a measure of water jet coating removal capability.

View Article and Find Full Text PDF

Due to the extremely high pressures in the deep sea, heavy ballast tanks and pressure compensating hydraulic tanks are typically required to support the operation of classic buoyancy controls. Buoyancy control systems driven by phase-change materials (PCM) have unique advantages over conventional hydraulically actuated buoyancy control systems, including high adaptability for deep-sea exploration and simple, lightweight, and compact structures. Inspired by this, a buoyancy control module (BCM) was designed with flexible material as the shell.

View Article and Find Full Text PDF