Publications by authors named "Dayo O Adewole"

Axonal extension and retraction are ongoing processes that occur throughout all developmental stages of an organism. The ability of axons to produce mechanical forces internally and respond to externally generated forces is crucial for nervous system development, maintenance, and plasticity. Such axonal mechanobiological phenomena have typically been evaluated at a single-cell level, but these mechanisms have not been studied when axons are present in a bundled three-dimensional (3D) form like in native tissue.

View Article and Find Full Text PDF

Hippocampal neural networks are distinctly capable of integrating multi-modal sensory inputs to drive memory formation. Neuroscientific investigations using simplified models have greatly relied on planar (2D) neuronal cultures made from dissociated tissue. While these models have served as simple, cost-effective, and high-throughput tools for examining various morphological and electrophysiological characteristics of hippocampal networks, 2D cultures fail to reconstitute critical elements of the brain microenvironment that may be necessary for the emergence of sophisticated integrative network properties.

View Article and Find Full Text PDF

Mild traumatic brain injury affects millions of individuals annually primarily through falls, traffic collisions, or blunt trauma and can generate symptoms that persist for years. Closed-head rotational loading is the most common cause of mild traumatic brain injury and is defined by a rapid rotational acceleration of brain tissue within an intact skull. Injury kinematics-the mechanical descriptors of injury-inducing motion-explain movement of the head, which govern energy transfer, and, therefore, determine injury severity.

View Article and Find Full Text PDF

Cochlear implantation has become the standard of care for hearing loss not amenable to amplification by bypassing the structures of the cochlea and stimulating the spiral ganglion neurons directly. Since the first single channel electrodes were implanted, significant advancements have been made: multi-channel arrays are now standard, they are softer to avoid damage to the cochlea and pre-curved to better position the electrode array adjacent to the nerve, and surgical and stimulation techniques have helped to conform to the anatomy and physiology of the cochlea. However, even with these advances the experience does not approach that of normal hearing.

View Article and Find Full Text PDF

The rostral migratory stream (RMS) facilitates neuroblast migration from the subventricular zone to the olfactory bulb throughout adulthood. Brain lesions attract neuroblast migration out of the RMS, but resultant regeneration is insufficient. Increasing neuroblast migration into lesions has improved recovery in rodent studies.

View Article and Find Full Text PDF

For implantable neural interfaces, functional/clinical outcomes are challenged by limitations in specificity and stability of inorganic microelectrodes. A biological intermediary between microelectrical devices and the brain may improve specificity and longevity through (i) natural synaptic integration with deep neural circuitry, (ii) accessibility on the brain surface, and (iii) optogenetic manipulation for targeted, light-based readout/control. Accordingly, we have developed implantable "living electrodes," living cortical neurons, and axonal tracts protected within soft hydrogel cylinders, for optobiological monitoring/modulation of brain activity.

View Article and Find Full Text PDF

Micro-Tissue Engineered Neural Networks (Micro-TENNs) are living three-dimensional constructs designed to replicate the neuroanatomy of white matter pathways in the brain and are being developed as implantable micro-tissue for axon tract reconstruction, or as anatomically-relevant in vitro experimental platforms. Micro-TENNs are composed of discrete neuronal aggregates connected by bundles of long-projecting axonal tracts within miniature tubular hydrogels. In order to help design and optimize micro-TENN performance, we have created a new computational model including geometric and functional properties.

View Article and Find Full Text PDF

Within the neural engineering field, next-generation implantable neuroelectronic interfaces are being developed using biologically-inspired and/or biologically-derived materials to improve upon the stability and functional lifetime of current interfaces. These technologies use biomaterials, bioactive molecules, living cells, or some combination of these, to promote host neuronal survival, reduce the foreign body response, and improve chronic device-tissue integration. This article provides a general overview of the different strategies, milestones, and evolution of bioactive neural interfaces including electrode material properties, biological coatings, and "decoration" with living cells.

View Article and Find Full Text PDF

Objective: Micro-tissue engineered neural networks (micro-TENNs) are anatomically-inspired constructs designed to structurally and functionally emulate white matter pathways in the brain. These 3D neural networks feature long axonal tracts spanning discrete neuronal populations contained within a tubular hydrogel, and are being developed to reconstruct damaged axonal pathways in the brain as well as to serve as physiologically-relevant in vitro experimental platforms. The goal of the current study was to characterize the functional properties of these neuronal and axonal networks.

View Article and Find Full Text PDF

Brain-computer interface and neuromodulation strategies relying on penetrating non-organic electrodes/optrodes are limited by an inflammatory foreign body response that ultimately diminishes performance. A novel "biohybrid" strategy is advanced, whereby living neurons, biomaterials, and microelectrode/optical technology are used together to provide a biologically-based vehicle to probe and modulate nervous-system activity. Microtissue engineering techniques are employed to create axon-based "living electrodes", which are columnar microstructures comprised of neuronal population(s) projecting long axonal tracts within the lumen of a hydrogel designed to chaperone delivery into the brain.

View Article and Find Full Text PDF

Functional recovery rarely occurs following injury or disease-induced degeneration within the central nervous system (CNS) due to the inhibitory environment and the limited capacity for neurogenesis. We are developing a strategy to simultaneously address neuronal and axonal pathway loss within the damaged CNS. This manuscript presents the fabrication protocol for micro-tissue engineered neural networks (micro-TENNs), implantable constructs consisting of neurons and aligned axonal tracts spanning the extracellular matrix (ECM) lumen of a preformed hydrogel cylinder hundreds of microns in diameter that may extend centimeters in length.

View Article and Find Full Text PDF

The ideal neuroprosthetic interface permits high-quality neural recording and stimulation of the nervous system while reliably providing clinical benefits over chronic periods. Although current technologies have made notable strides in this direction, significant improvements must be made to better achieve these design goals and satisfy clinical needs. This article provides an overview of the state of neuroprosthetic interfaces, starting with the design and placement of these interfaces before exploring the stimulation and recording platforms yielded from contemporary research.

View Article and Find Full Text PDF

Prominent neuropathology following trauma, stroke, and various neurodegenerative diseases includes neuronal degeneration as well as loss of long-distance axonal connections. While cell replacement and axonal pathfinding strategies are often explored independently, there is no strategy capable of simultaneously replacing lost neurons and re-establishing long-distance axonal connections in the central nervous system. Accordingly, we have created micro-tissue engineered neural networks (micro-TENNs), which are preformed constructs consisting of long integrated axonal tracts spanning discrete neuronal populations.

View Article and Find Full Text PDF