Nontypeable (NTHi) are clinically important Gram-negative bacteria that are responsible for various human mucosal diseases, including otitis media (OM). Recurrent OM caused by NTHi is common, and infections that recur less than 2 weeks following antimicrobial therapy are largely attributable to the recurrence of the same strain of bacteria. Toxin-antitoxin (TA) modules encoded by bacteria enable rapid responses to environmental stresses and are thought to facilitate growth arrest, persistence, and tolerance to antibiotics.
View Article and Find Full Text PDFBacterial type II toxin-antitoxin (TA) modules encode a toxic protein that downregulates metabolism and a specific antitoxin that binds and inhibits the toxin during normal growth. In non-typeable Haemophilus influenzae, a common cause of infections in humans, the vapXD locus was found to constitute a functional TA module and contribute to pathogenicity; however, the mode of action of VapD and the mechanism of inhibition by the VapX antitoxin remain unknown. Here, we report the structure of the intact H.
View Article and Find Full Text PDFEnviron Microbiol
October 2020
Sea level rise and the anthropogenic warming of the world's oceans is not only an environmental tragedy, but these changes also result in a significant threat to public health. Along with coastal flooding and the encroachment of saltwater farther inland comes an increased risk of human interaction with pathogenic Vibrio species, such as Vibrio cholerae, V. vulnificus and V.
View Article and Find Full Text PDFToxin-antitoxin (TA) gene pairs have been identified in nearly all bacterial genomes sequenced to date and are thought to facilitate persistence and antibiotic tolerance. TA loci are classified into various types based upon the characteristics of their antitoxins, with those in type II expressing proteic antitoxins. Many toxins from type II modules are ribonucleases that maintain a PilT N-terminal (PIN) domain containing conserved amino acids considered essential for activity.
View Article and Find Full Text PDFAntimicrob Agents Chemother
August 2018
Antimicrobial lock solutions are important for prevention of microbial colonization and infection of long-term central venous catheters. We investigated the efficacy and safety of a novel antibiotic-free lock solution formed from gas plasma-activated disinfectant (PAD). Using a luminal biofilm model, viable cells of methicillin-resistant , , , and in mature biofilms were reduced by 6 to 8 orders of magnitude with a PAD lock for 60 min.
View Article and Find Full Text PDFThe increasing emergence of multidrug-resistant bacteria is recognized as a major threat to human health worldwide. While the use of small molecule antibiotics has enabled many modern medical advances, it has also facilitated the development of resistant organisms. This minireview provides an overview of current small molecule drugs approved by the US Food and Drug Administration (FDA) for use in humans, the unintended consequences of antibiotic use, and the mechanisms that underlie the development of drug resistance.
View Article and Find Full Text PDFExp Biol Med (Maywood)
June 2016
Toxin-antitoxin systems are encoded by bacteria and archaea to enable an immediate response to environmental stresses, including antibiotics and the host immune response. During normal conditions, the antitoxin components prevent toxins from interfering with metabolism and arresting growth; however, toxin activation enables microbes to remain dormant through unfavorable conditions that might continue over millions of years. Intense investigations have revealed a multitude of mechanisms for both regulation and activation of toxin-antitoxin systems, which are abundant in pathogenic microorganisms.
View Article and Find Full Text PDFBackground: Microvascular leakage of plasma proteins is a hallmark of inflammation that leads to tissue dysfunction. There are no current therapeutic strategies to reduce microvascular permeability. The purpose of this study was to identify the role of Rnd3, an atypical Rho family GTPase, in the control of endothelial barrier integrity.
View Article and Find Full Text PDFNontypeable Haemophilus influenzae (NTHi) is an opportunistic pathogen that is a common cause of acute and recurrent mucosal infections. One uncharacterized NTHi toxin-antitoxin (TA) module, NTHI1912-1913, is a host inhibition of growth (higBA) homologue. We hypothesized that this locus, which we designated toxAvapA, contributed to NTHi survival during infection.
View Article and Find Full Text PDFThis report describes a novel approach to cancer therapy that targets genes that are preferentially alternatively spliced and expressed in leukemia. We developed CD44v6 and CD44v8 splicing constructs fused with GFP or a humanized fragment of Pseudomonas aeruginosa exotoxin A (hPE24). Transfection of K562 leukemia cells with the GFP-linked splicing constructs led to subsequent production of detectable levels of GFP.
View Article and Find Full Text PDFBackground: Nontypeable Haemophilus influenzae (NTHi) is a significant human pathogen responsible for respiratory tract infections and the most common cause of recurrent otitis media. Type II toxin-antitoxin (TA) systems are genetic elements that code for a stable protein toxin and a labile antitoxin that are thought to be involved in metabolic regulation of bacteria by enabling a switch to a dormant state under stress conditions. The contribution to infection persistence of the NTHi TA loci vapBC-1 and vapXD was examined in this study.
View Article and Find Full Text PDFNon-typeable Haemophilus influenzae (NTHi) are human-adapted Gram-negative bacteria that comprise part of the normal flora of the human upper airway, but are also responsible for a number of mucosal infections such as otitis media and bronchitis. These infections often recur and can become chronic. To characterize the effect of long-term co-culture of NTHi with human tissues, we infected primary respiratory epithelial cells grown at the air-liquid interface with three NTHi strains over a range of 1-10 days.
View Article and Find Full Text PDFNontypeable Haemophilus influenzae (NTHi) are human-adapted commensal bacteria that can cause a number of chronic mucosal infections, including otitis media and bronchitis. One way for these organisms to survive antibiotic therapy and cause recurrent disease is to stop replicating, as most antimicrobials target essential biosynthetic pathways. Toxin-antitoxin (TA) gene pairs have been shown to facilitate entry into a reversible bacteriostatic state.
View Article and Find Full Text PDFNontypeable Haemophilus influenzae (NTHi) are human-adapted Gram-negative bacteria that can cause recurrent and chronic infections of the respiratory mucosa (1; 2). To study the mechanisms by which these organisms survive on and inside respiratory tissues, a model in which successful long-term co-culture of bacteria and human cells can be performed is required. We use primary human respiratory epithelial tissues raised to the air-liquid interface, the EpiAirway model (MatTek, Ashland, MA).
View Article and Find Full Text PDFMicrovascular leakage has been implicated in the pathogenesis of multiple organ dysfunction during trauma. Previous studies suggest the involvement of myosin light chain (MLC) phosphorylation-triggered endothelial contraction in the development of microvascular hyperpermeability. Myosin light chain kinase (MLCK) plays a key role in the control of MLC-phosphorylation status; thus, it is thought to modulate barrier function through its regulation of intracellular contractile machinery.
View Article and Find Full Text PDFNontypeable Haemophilus influenzae (NTHi) organisms are obligate parasites of the human upper respiratory tract that can exist as commensals or pathogens. Toxin-antitoxin (TA) loci are highly conserved gene pairs that encode both a toxin and antitoxin moiety. Seven TA gene families have been identified to date, and NTHi carries two alleles of the vapBC family.
View Article and Find Full Text PDFTo gain insight into the role of luxSHi in disease pathogenesis, we inactivated that gene in several non-typeable Haemophilus influenzae isolates with an antibiotic resistance cassette. Gene inactivation was confirmed by PCR and by Southern blot analysis in each strain. Culture filtrates from luxSHi mutants contained a decreased amount of autoinducer-2 (AI-2) activity in comparison to the wild-type isolates using the Vibrio harveyi BB170 bioassay.
View Article and Find Full Text PDFBackground: Certain strains of an obligate parasite of the human upper respiratory tract, nontypeable Haemophilus influenzae (NTHi), can cause invasive diseases such as septicemia and meningitis, as well as chronic mucosal infections such as otitis media. To do this, the organism must invade and survive within both epithelial and endothelial cells. We have identified a facilitator of NTHi survival inside human cells, virulence-associated protein D (vapDHi, encoded by gene HI0450).
View Article and Find Full Text PDFJ Microbiol Methods
June 2004
Complementation of chromosomal mutations in trans can introduce artifacts due to the number of episomal copies of the gene in question. One solution is to study the gene expressed at a single ectopic site in cis. We have designed and constructed a vector that allows homologous recombination into a gene encoding a frame-shifted IS1016-V6 protein in the Haemophilus influenzae Rd KW20 chromosome (HI1018).
View Article and Find Full Text PDFThe K1 capsule is an essential virulence determinant of Escherichia coli strains that cause meningitis in neonates. Biosynthesis and transport of the capsule, an alpha-2,8-linked polymer of sialic acid, are encoded by the 17-kb kps gene cluster. We deleted neuC, a K1 gene implicated in sialic acid synthesis, from the chromosome of EV36, a K-12-K1 hybrid, by allelic exchange.
View Article and Find Full Text PDFJ Clin Microbiol
September 2003
A chemically defined medium that supports the growth of both encapsulated and nontypeable Haemophilus influenzae strains in broth to densities that are >/= 10(9) CFU/ml or on agar plates is described. The mean generation time of a panel of clinical isolates was comparable to that in rich, chemically undefined media (brain-heart infusion broth supplemented with heme and beta-NAD).
View Article and Find Full Text PDFHaemophilus influenzae is a human-adapted commensal and pathogen that can cause mucosal infections such as sinusitis, otitis media and bronchitis. Certain strains also cause bacteraemia and meningitis. Clinical isolates are genetically heterogeneous and are often recalcitrant to standard genetic manipulation.
View Article and Find Full Text PDFDevelopments in high-throughput analysis tools coupled with integrative computational techniques have enabled biological studies to reach new levels. The ability to correlate large volumes of diverse data types into cohesive models of organism function has spawned a new systematic approach to biological investigation. The creation of a new consortium has been proposed to investigate a single organism utilizing these comprehensive approaches.
View Article and Find Full Text PDF