Neural Netw
November 2024
How to accurately learn task-relevant state representations from high-dimensional observations with visual distractions is a realistic and challenging problem in visual reinforcement learning. Recently, unsupervised representation learning methods based on bisimulation metrics, contrast, prediction, and reconstruction have shown the ability for task-relevant information extraction. However, due to the lack of appropriate mechanisms for the extraction of task information in the prediction, contrast, and reconstruction-related approaches and the limitations of bisimulation-related methods in domains with sparse rewards, it is still difficult for these methods to be effectively extended to environments with distractions.
View Article and Find Full Text PDFTissue-based gene expression data analyses, while most powerful, represent a significantly more challenging problem compared to cell-based gene expression data analyses, even for the simplest differential gene expression analyses. The result in determining if a gene is differentially expressed in tumor vs. non-tumorous control tissues does not only depend on the two expression values but also on the percentage of the tissue cells being tumor cells, i.
View Article and Find Full Text PDFNon-invasive prediction of isocitrate dehydrogenase () genotype plays an important role in tumor glioma diagnosis and prognosis. Recently, research has shown that radiology images can be a potential tool for genotype prediction, and fusion of multi-modality data by deep learning methods can further provide complementary information to enhance prediction accuracy. However, it still does not have an effective deep learning architecture to predict genotype with three-dimensional (3D) multimodal medical images.
View Article and Find Full Text PDFA soft-modeling multivariate numerical approach that combines self-modeling curve resolution (SMCR) and mixed Lorentzian-Gaussian curve fitting was successfully implemented for the first time to elucidate spatially and spectroscopically resolved spectral information from infrared imaging data of oral mucosa cells. A novel variant form of the robust band-target entropy minimization (BTEM) SMCR technique, coined as hierarchical BTEM (hBTEM), was introduced to first cluster similar cellular infrared spectra using the unsupervised hierarchical leader-follower cluster analysis (LFCA) and subsequently apply BTEM to clustered subsets of data to reconstruct three protein secondary structure (PSS) pure component spectra-alpha-helix, beta-sheet, and ambiguous structures-that associate with spatially differentiated regions of the cell infrared image. The Pearson VII curve-fitting procedure, which approximates a mixed Lorentzian-Gaussian model for spectral band shape, was used to optimally curve fit the resolved amide I and II bands of various hBTEM reconstructed PSS pure component spectra.
View Article and Find Full Text PDF