Publications by authors named "Dayane B Tada"

The biochemical analysis of animal venoms has been intensifying over the years, enabling the prediction of new molecules derived from toxins, harnessing the therapeutic potential of these molecules. From the venom of the fish , using methods for predicting antimicrobial and cell-penetrating peptides, two peptides from Natterins with promising characteristics were synthesized and subjected to and analysis. The peptides were subjected to stability tests and antimicrobial assays, cytotoxicity in murine fibroblast cells, antiviral assays against the Chikungunya virus, and the toxicity on was also evaluated.

View Article and Find Full Text PDF

In this study, sustainable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and pullulan (PUL)/PHBV filaments were prepared with ketoprofen for scaffold preparation. The research aimed evaluate the influence of pullulan in the filament properties, such as thermal, morphological, and biological behavior. Hansen parameters demonstrated the difference in the miscibility of the polymers and drug in the blend.

View Article and Find Full Text PDF

The green synthesis of silver nanoparticles (AgNPs) can be developed using safe and environmentally friendly routes, can replace potentially toxic chemical methods, and can increase the scale of production. This study aimed to synthesize AgNPs from aqueous extracts of guarana () leaves and flowers, collected in different seasons of the year, as a source of active biomolecules capable of reducing silver ions (Ag) and promoting the stabilization of colloidal silver (Ag). The plant aqueous extracts were characterized regarding their metabolic composition by liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS/MS), phenolic compound content, and antioxidant potential against free radicals.

View Article and Find Full Text PDF

Background/aim: The Brain-Specific Homeobox/POU Domain Protein 2 (BRN2) transcription factor supports melanoma progression by regulating the expression of several genes involved in cell migration and invasion. We hypothesized that a peptide designed based on the POU domain of BRN2 could block the BRN2 transcription activity and, consequently, reduce metastasis.

Materials And Methods: Cell viability was accessed by Trypan Blue exclusion dye assay and xCelligence platform.

View Article and Find Full Text PDF

Boosted by the indiscriminate use of antibiotics, multidrug-resistance (MDR) demands new strategies to combat bacterial infections, such as photothermal therapy (PTT) based on plasmonic nanostructures. PTT efficiency relies on photoinduced damage caused to the bacterial machinery, for which nanostructure incorporation into the cell envelope is key. Herein, we shall unveil the binding and photochemical mechanisms of gold shell-isolated nanorods (AuSHINRs) on bioinspired bacterial membranes assembled as Langmuir and Langmuir-Schaefer (LS) monolayers of DOPE, Lysyl-PG, DOPG and CL.

View Article and Find Full Text PDF

Luiz Rodolpho Travassos, a Brazilian scientist recognized in several areas of research, began his studies in the field of oncology in the late 1970s when he took a sabbatical at the Memorial Sloan Kettering Cancer Center, NY, USA. At that time, the discovery and characterization of human melanoma glycoprotein antigens yielded important publications. This experience allowed 16 years later, and Dr.

View Article and Find Full Text PDF

Regardless of the promising use of nanoparticles (NPs) in biomedical applications, several toxic effects have increased the concerns about the safety of these nanomaterials. Although the pathways for NPs toxicity are diverse and dependent upon many parameters such as the nature of the nanoparticle and the biochemical environment, numerous studies have provided evidence that direct contact between NPs and biomolecules or cell membranes leads to cell inactivation or damage and may be a primary mechanism for cytotoxicity. In such a context, this work focused on developing a fast and accurate method to characterize the interaction between NPs, proteins and lipidic membranes by surface plasmon resonance imaging (SPRi) technique.

View Article and Find Full Text PDF

Background: Photodynamic therapy (PDT) is a non-invasive treatment modality that destroys abnormally growing cells or microorganisms. Porphyrins are used as photosensitizers in PDT; however, their clinical application has been limited by their poor water solubility, resulting in aggregation and low quantum yields of reactive oxygen species (ROS).

Methods: To overcome these limitations and improve PDT efficacy, we herein report the conjugation of ZnCuInS/ZnS (ZCIS/ZnS) quantum dots (QDs) to 5,10,15,20-tetrakis(3-hydroxyphenyl)porphyrin (mTHPP).

View Article and Find Full Text PDF

The functionalization of nanoparticles with therapeutic peptides has been pointed out as a promising strategy to improve the applications of these molecules in the field of health sciences. Peptides are highly bioactive but face several limitations such as low bioavailability due to the difficulty of overcoming the physiological barriers in the body and their degradation by enzymes. In this work, gold nanoparticles (AuNPs) were co-functionalized with two therapeutic peptides simultaneously.

View Article and Find Full Text PDF

Nanoparticles (NPs) are a promising strategy for delivering drugs to specific sites because of their tunable size and surface chemistry variety. Among the availablematerials, NPs prepared with biopolymers are of particular interest because of their biocompatibility and controlled release of encapsulated drugs. Poly lactic-co-glycolic acid (PLGA) is one of the most widely used biopolymers in biomedical applications.

View Article and Find Full Text PDF

The development of resistance against photodamage triggered by photodynamic therapy (PDT) is ascribed mainly to the cellular redox defenses and repair. If the tumor tissue is not promptly eliminated by the first few PDT sessions, PDT-resistance can be favored, challenging the efficacy of the treatment. Although the mechanism of PDT resistance is still unclear, in vitro assays have evidenced that it can be developed through the PARP damage-repair signaling pathway.

View Article and Find Full Text PDF

Conjugation of photosensitizers (PS) with nanoparticles has been largely used as a strategy to stabilize PS in the biological medium resulting in photosensitizing nanoparticles of enhanced photoactivity. Herein, (Meso-5, 10, 15, 20-tetrakis (3-hydroxyphenyl) phorphyryn (mTHPP) was conjugated with diamond nanoparticles (ND) by covalent bond. Nanoconjugate ND-mTHPP showed suitable stability in aqueous suspension with 58 nm of hydrodynamic diameter and Zeta potential of -23 mV.

View Article and Find Full Text PDF

The increasing incidence of diseases caused by the harmful effects of UV radiation in skin, predominantly skin cancer, induce the search for more efficient photoprotector agents. Nowadays, titanium dioxide (TiO) and zinc oxide (ZnO) are the most widely used photoprotectors and therefore form the main components of commercially available sunscreens. Although the outstanding efficiency in absorbing and scattering UV radiation, mainly as nanoparticles, recent studies have raised concerns regarding the safe use of these nanoparticles, especially due to their high generation of reactive oxygen species (ROS).

View Article and Find Full Text PDF

Over the past few years, several tridimensional synthetic bone grafts, known as scaffolds, are being developed to overcome the autologous grafts limitations. Among the materials used on the production of scaffolds, the 45S5 bioglass stands out due to its capacity of bonding to hard and soft tissues. Silver nanoparticles are well-known for their antimicrobial properties and their incorporation on the scaffold may promote its antimicrobial response, avoiding microorganism proliferation on the materials surface.

View Article and Find Full Text PDF

The emergence of bacterial resistance due to the indiscriminate use of antibiotics warrants the need for developing new bioactive agents. In this context, antimicrobial peptides are highly useful for managing resistant microbial strains. In this study, we report the isolation and characterization of peptides obtained from the venom of the toadfish .

View Article and Find Full Text PDF

Microbial biofilms, structured communities of microorganisms, have been often associated to the infection and bacterial multiresistance problem. Conventional treatment of infection involves the use of antibiotics, being an alternative approach is the use of red propolis, a natural product, to prepare polymer nanoparticles. The aim of the present study was to encapsulate red propolis extract in poly(lactic-co-glycolic acid) (PLGA) nanoparticles for destruction in vitro of pathogenic biofilms.

View Article and Find Full Text PDF

Although photodynamic therapy (PDT) of cancer has been continuously improved, its efficiency is still limited by the high toxicity in the absence of irradiation, aggregation and deactivation by biomolecules of the most common photosensitizers (PS). The association of PS to nanoparticles (NPs) can be a promising tool to overcome these limitations and also to enhance PS tumoral selectivity. In addition, the association of PS to metallic NPs may provide the modulation of PS fluorescence and also the enhancement of PS photoactivity due to the electronic coupling with NPs plasmon effect.

View Article and Find Full Text PDF

Background: BRN2 transcription factor is associated with the development of malignant melanoma. The cytotoxic activities and cell death mechanism against B16F10-Nex2 cells were determined with synthetic peptide R18H derived from the POU domain of the BRN2 transcription factor.

Objective: To determine the cell death mechanisms and in vivo activity of peptide R18H derived from the POU domain of the BRN2 transcription factor against B16F10-Nex2 cells.

View Article and Find Full Text PDF

One of the most important challenges in tissue engineering research is the development of biomimetic materials. In this present study, we have investigated the effect of the titanium dioxide (TiO ) nanoparticles on the properties of electrospun mats of poly (hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), to be used as scaffold. The morphology of electrospun fibers was observed by scanning electron microscopy (SEM).

View Article and Find Full Text PDF

Despite the positive results observed in vitro and in vivo, clinical trials with bioactive peptides are generally hampered by their fast degradation in the biological system. Two bioactive peptides, P20 (CSSRTMHHC) and the combined peptide C (CVNHPAFACGYGHTMYYHHYQHHL) have been identified as anticancer therapeutics. Combined peptide C consists of peptide C (CVNHPAFAC), a tumor-homing peptide, conjugated to the antiangiogenic peptide HTMYYHHYQHHL with a GYG.

View Article and Find Full Text PDF

Electroactive nanofibers based on thermoplastic polyurethane (TPU) and poly(alkoxy anilines) produced by electrospinning has been explored for biomaterials applications. The thermoplastic polyurethane is a biocompatible polymer with good mechanical properties. The production of TPU nanofibers requires the application of high voltage during electrospinning in order to prepare uniform mats due to its weak ability to elongate during the process.

View Article and Find Full Text PDF

Antibody-derived peptides modulate functions of the immune system and are a source of anti-infective and antitumor substances. Recent studies have shown that they comprise amino acid sequences of immunoglobulin complementarity-determining regions, but also fragments of constant regions. VH CDR3 of murine mAb AC-1001 displays antimetastatic activities using B16F10-Nex2 murine melanoma cells in a syngeneic model.

View Article and Find Full Text PDF

The association of PhotoSensitizer (PS) molecules with nanoparticles (NPs) forming photosensitizing NPs, has emerged as a therapeutic strategy to improve PS tumor targeting, to protect PS from deactivation reactions and to enhance both PS solubility and circulation time. Since association with NPs usually alters PS photophysical and photochemical properties, photosensitizing NPs are an important tool to modulate ROS generation. Depending on the design of the photosensitizing NP, i.

View Article and Find Full Text PDF

Lipid coating is a method highly used to improve the biocompatibility of nanoparticles (NPs), even though its effect on the NP properties is still object of investigation. Herein, silica NPs containing methylene blue, which is a photosensitizer used in a variety of biomedical applications, were coated with a phospholipid bilayer. Regarding the photophysical properties, lipid-coating did not cause significant changes since bare and lipid-coated NPs presented very similar absorption spectra and generated singlet oxygen with similar efficiencies.

View Article and Find Full Text PDF

Purpose: To characterize and evaluate chitosan film containing PLGA nanoparticles (NPs) as a platform for localized dual-drug release.

Methods: Fluorescent Paclitaxel (FPTX), a hydrophobic drug, was incorporated into PLGA NPs. FPTX-loaded PLGA NPs and Carboxyfluorescein (CF), a hydrophilic model drug, were embedded into chitosan films.

View Article and Find Full Text PDF