Publications by authors named "Dayana Bashirova"

We compare two recently developed strategies, implemented in open source software packages, for computing linear optical spectra in condensed phase environments in the presence of nonadiabatic effects. Both approaches rely on computing excitation energy and transition dipole fluctuations along molecular dynamics (MD) trajectories, treating molecular and environmental degrees of freedom on the same footing. Spectra are then generated in two ways: in the recently developed Gaussian non-Condon theory, the linear response functions are computed in terms of independent adiabatic excited states, with non-Condon effects described through spectral densities of transition dipole fluctuations.

View Article and Find Full Text PDF

Theoretical spectroscopy plays a crucial role in understanding the properties of the materials and molecules. One of the most promising methods for computing optical spectra of chromophores embedded in complex environments from the first principles is the cumulant approach, where both (generally anharmonic) vibrational degrees of freedom and environmental interactions are explicitly accounted for. In this work, we verify the capabilities of the cumulant approach in describing the effect of complex environmental interactions on linear absorption spectra by studying Crystal Violet (CV) in different solvents.

View Article and Find Full Text PDF

Pharmacophore models are widely used for the identification of promising primary hits in compound large libraries. Recent studies have demonstrated that pharmacophores retrieved from protein-ligand molecular dynamic trajectories outperform pharmacophores retrieved from a single crystal complex structure. However, the number of retrieved pharmacophores can be enormous, thus, making it computationally inefficient to use all of them for virtual screening.

View Article and Find Full Text PDF