Background: Positron emission tomography (PET)-derived LV MBF quantification is usually measured in standard anatomical vascular territories potentially averaging flow from normally perfused tissue with those from areas with abnormal flow supply. Previously we reported on an image-based tool to noninvasively measure absolute myocardial blood flow at locations just below individual epicardial vessel to help guide revascularization. The aim of this work is to determine the robustness of vessel-specific flow measurements (MBF) extracted from the fusion of dynamic PET (dPET) with coronary computed tomography angiography (CCTA) myocardial segmentations, using flow measured from the fusion with CCTA manual segmentation as the reference standard.
View Article and Find Full Text PDFObjectives: The purpose of this study is to assess mIBG uptake in scar border zone and its relation with ventricular arrhythmia (VA) inducibility on electrophysiology (EP) testing using I-123 mIBG SPECT and resting Tc-99m SPECT myocardial perfusion imaging (MPI).
Methods: Forty-seven patients from a previous clinical trial were retrospectively analyzed. These patients underwent I-123 mIBG and resting Tc-99m tetrofosmin SPECT, and EP testing.
Background: The purpose of this study was to examine the relationship between myocardial uptake of (123)I-mIBG and age in older normal adult subjects.
Methods: 94 subjects (age 29-82, mean 58.5) without coronary heart disease were studied.
Purpose: Decision support systems for imaging analysis and interpretation are rapidly being developed and will have an increasing impact on the practice of medicine. RENEX is a renal expert system to assist physicians evaluate suspected obstruction in patients undergoing mercaptoacetyltriglycine (MAG3) renography. RENEX uses quantitative parameters extracted from the dynamic renal scan data using QuantEM™II and heuristic rules in the form of a knowledge base gleaned from experts to determine if a kidney is obstructed; however, RENEX does not have access to and could not consider the clinical information available to diagnosticians interpreting these studies.
View Article and Find Full Text PDFBackground: The purpose of this study was to evaluate global quantitation of cardiac uptake on I-123 mIBG SPECT.
Methods: The study included a pilot group of 67 subjects and a validation group of 1,051 subjects. SPECT images were reconstructed by filtered backprojection, ordered subsets expectation maximization, and deconvolution of septal penetration, respectively.
Unlabelled: Kidney motion during dynamic renal scintigraphy can cause errors in calculated renal function parameters. Our goal was to develop and validate algorithms to detect and correct patient motion.
Methods: We retrospectively collected dynamic images from 86 clinical renal studies (42 women, 44 men), acquired using (99m)Tc-mercaptoacetyltriglycine (80 image frames [128 × 128 pixels; 3.
Unlabelled: The purposes of this study were to describe and evaluate a software engine to justify the conclusions reached by a renal expert system (RENEX) for assessing patients with suspected renal obstruction and to obtain from this evaluation new knowledge that can be incorporated into RENEX to attempt to improve diagnostic performance.
Methods: RENEX consists of 60 heuristic rules extracted from the rules used by a domain expert to generate the knowledge base and a forward-chaining inference engine to determine obstruction. The justification engine keeps track of the sequence of the rules that are instantiated to reach a conclusion.