IEEE Trans Neural Netw Learn Syst
March 2024
In general, deep neural network (DNN) pruning methods fall into two categories: 1) weight-based deterministic constraints and 2) probabilistic frameworks. While each approach has its merits and limitations, there are a set of common practical issues such as trial-and-error to analyze sensitivity and hyper-parameters to prune DNNs, which plague them both. In this work, we propose a new single-shot, fully automated pruning algorithm called slimming neural networks using adaptive connectivity scores (SNACS).
View Article and Find Full Text PDF