Chronic myelogenous leukemia (CML) is a hematopoietic stem cell malignancy that accounts for 15-20% of all cases of leukemia. CML is caused by a translocation between chromosomes 9 and 22 which creates an abnormal fusion gene, BCR::ABL1. The amount of BCR::ABL1 transcript RNA is a marker of disease progression and the effectiveness of tyrosine kinase inhibitor (TKI) treatment.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFTelomerase is a cellular RNA template-dependent reverse transcriptase that adds telomere repeats to the 3' ends of chromosomes. Telomerase is expressed almost universally in tumor cells (>85%) to maintain telomere length, thus providing the ability of tumor cells to avoid senescence and to have unlimited replication ability, one of the key hallmarks of cancer. ddTRAP (droplet digital Telomere Repeat Amplification Protocol) is a two-step assay with whole cell lysates that utilizes a telomerase-mediated primer extension followed by droplet digital PCR (ddPCR) detection of extended products.
View Article and Find Full Text PDFNearly 80% of cancer patients do not have genetic mutation results available at initial oncology consultation; up to 25% of patients begin treatment before receiving their results. These factors hinder the ability to pursue optimal treatment strategies. This study validates a blood-based genome-testing service that provides accurate results within 72 hours.
View Article and Find Full Text PDFGlucocorticoids (GCs), including dexamethasone (dex), are a central component of combination chemotherapy for childhood B-cell precursor acute lymphoblastic leukemia (B-ALL). GCs work by activating the GC receptor (GR), a ligand-induced transcription factor, which in turn regulates genes that induce leukemic cell death. Which GR-regulated genes are required for GC cytotoxicity, which pathways affect their regulation, and how resistance arises are not well understood.
View Article and Find Full Text PDFMelanoma lacks a clinically useful blood-based biomarker of disease activity to help guide patient management. To determine whether measurements of circulating, cell-free, tumor-associated BRAF(mutant) and NRAS(mutant) DNA (ctDNA) have a higher sensitivity than LDH to detect metastatic disease prior to treatment initiation and upon disease progression we studied patients with unresectable stage IIIC/IV metastatic melanoma receiving treatment with BRAF inhibitor therapy or immune checkpoint blockade and at least 3 plasma samples obtained during their treatment course. Levels of BRAF(mutant) and NRAS(mutant) ctDNA were determined using droplet digital PCR (ddPCR) assays.
View Article and Find Full Text PDFThe recent introduction of Droplet Digital PCR (ddPCR) has provided researchers with a tool that permits direct quantification of nucleic acids from a wide range of samples with increased precision and sensitivity versus RT-qPCR. The sample interdependence of RT-qPCR stemming from the measurement of Cq and ΔCq values is eliminated with ddPCR which provides an independent measure of the absolute nucleic acid concentration for each sample without standard curves thereby reducing inter-well and inter-plate variability. Well-characterized RNA purified from H275-wild type (WT) and H275Y-point mutated (MUT) neuraminidase of influenza A (H1N1) pandemic 2009 virus was used to demonstrate a ddPCR optimization workflow to assure robust data for downstream analysis.
View Article and Find Full Text PDFIn mammals, lactation is a rich source of nutrients and antibodies for newborn animals. However, millions of mothers each year experience an inability to breastfeed. Exposure to several environmental toxicants, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has been strongly implicated in impaired mammary differentiation and lactation.
View Article and Find Full Text PDFCreating spontaneous yet genetically tractable human tumors from normal cells presents a fundamental challenge. Here we combined retroviral and transposon insertional mutagenesis to enable cancer gene discovery starting with human primary cells. We used lentiviruses to seed gain- and loss-of-function gene disruption elements, which were further deployed by Sleeping Beauty transposons throughout the genome of human bone explant mesenchymal cells.
View Article and Find Full Text PDFThe telomere repeat amplification protocol (TRAP) for the human reverse transcriptase, telomerase, is a PCR-based assay developed two decades ago and is still used for routine determination of telomerase activity. The TRAP assay can only reproducibly detect ∼ 2-fold differences and is only quantitative when compared to internal standards and reference cell lines. The method generally involves laborious radioactive gel electrophoresis and is not conducive to high-throughput analyzes.
View Article and Find Full Text PDFObjective: To determine whether human blastocysts secrete microRNA (miRNAs) into culture media and whether these reflect embryonic ploidy status and can predict in vitro fertilization (IVF) outcomes.
Design: Experimental study of human embryos and IVF culture media.
Setting: Academic IVF program.
Introduction: High failure rates of new investigational drugs have impaired the development of breast cancer therapies. One challenge is that excellent activity in preclinical models, such as established cancer cell lines, does not always translate into improved clinical outcomes for patients. New preclinical models, which better replicate clinically-relevant attributes of cancer, such as chemoresistance, metastasis and cellular heterogeneity, may identify novel anti-cancer mechanisms and increase the success of drug development.
View Article and Find Full Text PDFHuman breast cancer is a heterogeneous disease composed of different histologies and molecular subtypes, many of which are not replicated in animal models. Here, we report a mouse model of breast cancer that generates unique tumor histologies including tubular, adenosquamous, and lipid-rich carcinomas. Utilizing a nononcogenic variant of polyoma middle T oncogene (PyMT) that requires a spontaneous base-pair deletion to transform cells, in conjunction with lentiviral transduction and orthotopic transplantation of primary mammary epithelial cells, this model sporadically induces oncogene expression in both the luminal and myoepithelial cell lineages of the normal mouse mammary epithelium.
View Article and Find Full Text PDFDuring the process of branching morphogenesis, the mammary gland undergoes distinct phases of remodeling to form an elaborate ductal network that ultimately produces and delivers milk to newborn animals. These developmental events rely on tight regulation of critical cellular pathways, many of which are probably disrupted during initiation and progression of breast cancer. Transgenic mouse and in vitro organoid models previously identified growth factor signaling as a key regulator of mammary branching, but the functional downstream targets of these pathways remain unclear.
View Article and Find Full Text PDFObjective: To determine the most highly expressed microRNAs (miRNAs) in human blastocysts and to compare miRNAs in euploid versus aneuploid embryos and in male versus female embryos.
Design: Experimental study of human embryos: 14 blastocysts (four male, five female, and five aneuploid) were evaluated for miRNA expression with the use of an array-based quantitative real-time polymerase chain reaction (qPCR). Highly expressed and differentially expressed miRNAs were confirmed with the use of qPCR in an expanded set of 27 blastocysts (seven male, eleven female, and nine aneuploid).
Defining master transcription factors governing somatic and cancer stem cell identity is an important goal. Here we show that the Oct4 paralog Oct1, a transcription factor implicated in stress responses, metabolic control, and poised transcription states, regulates normal and pathologic stem cell function. Oct1(HI) cells in the colon and small intestine co-express known stem cell markers.
View Article and Find Full Text PDFEndometrial carcinoma is the most common gynecologic cancer, yet the mechanisms underlying this disease process are poorly understood. We hypothesized that Lef1 is required for endometrial gland formation within the uterus and is overexpressed in endometrial cancer. Using Lef1 knockout (KO) mice, we compared uterine gland development to wild-type (WT) controls, with respect to both morphology and expression of the Lef1 targets, cyclin D1 and MMP7.
View Article and Find Full Text PDFThe regenerative potential of mammary epithelium facilitates assessment of the "stemness" of any epithelial subpopulation in transplantation assays. Thus, mammary tissue can be dissociated into single cells, stained for cell surface markers of interest and classified using fluorescence-activated cell sorting. The selected cells can then be transplanted into epithelium-devoided fat pads from recipient hosts.
View Article and Find Full Text PDFMammary reconstitution assays can be used to measure the stem cell frequency within an epithelial population by transplanting increasingly diluted single-cell preparations of the population of interest. There are fundamental steps in the single-cell isolation protocol which are directly related to the number of single epithelial cells obtained. Once single-cell suspensions have been obtained, serial dilutions are prepared and transplanted into the cleared fat pads of the host mice.
View Article and Find Full Text PDFThe mammary gland consists of an epithelial ductal tree embedded in a fat pad. Adult mammary epithelium has been demonstrated to have outstanding regenerative potential, consistent with the presence of resident, adult stem cells. However, there are currently no bona fide markers to identify these cells within their tissue context.
View Article and Find Full Text PDFMutations in adenomatous polyposis coli (APC) underlie the earliest stages of colorectal carcinogenesis. Consequences of APC mutation include stabilization of beta-catenin, dysregulation of cyclooxygenase-2 (COX-2) expression, and loss of retinoic acid production, events with poorly defined interactions. Here we showed that treatment of zebrafish expressing a truncated form of Apc with either retinoic acid or a selective COX-2 inhibitor decreased beta-catenin protein levels and downstream signaling events.
View Article and Find Full Text PDFCongenital hypertrophy/hyperplasia of the retinal pigmented epithelium is an ocular lesion found in patients harboring mutations in the adenomatous polyposis coli (APC) tumor suppressor gene. We report that Apc-deficient zebrafish display developmental abnormalities of both the lens and retina. Injection of dominant-negative Lef reduced Wnt signaling in the lens but did not rescue retinal differentiation defects.
View Article and Find Full Text PDFMutations in the adenomatous polyposis coli (APC) tumor suppressor gene seem to underlie the initiation of many colorectal carcinomas. Loss of APC function results in accumulation of beta-catenin and activation of beta-catenin/TCF-dependent transcription. Recent studies have implicated APC in controlling retinoic acid biosynthesis during normal intestinal development through a WNT-independent mechanism.
View Article and Find Full Text PDFMutations in the adenomatous polyposis coli (APC) gene result in uncontrolled proliferation of intestinal epithelial cells and are associated with the earliest stages of colorectal carcinogenesis. Cyclooxygenase-2 (COX-2) is elevated in human colorectal cancers and plays an important role in colorectal tumorigenesis; however, the mechanisms by which APC mutations result in increased COX-2 expression remain unclear. We utilized APC mutant zebrafish and human cancer cells to investigate how APC modulates COX-2 expression.
View Article and Find Full Text PDFRetinoic acid (RA) is a potent signaling molecule that plays important roles in multiple and diverse developmental processes. The contribution of retinoic acid to promoting the development and differentiation of the vertebrate intestine and the factors that regulate RA production in the gut remain poorly defined. Herein, we report that the novel retinol dehydrogenase, rdh1l, is required for proper gut development and differentiation.
View Article and Find Full Text PDF