Rapid and precise detection of Chlamydia trachomatis, the leading global cause of sexually transmitted infections (STI), at the point of care (POC) is required for treatment decisions to prevent transmission and sequelae, including pelvic inflammatory disease, ectopic pregnancy, tubal factor infertility, and preterm birth. We developed a rapid POC test (POCT), termed LH-POCT, which uses oop-mediated lification (LAMP) of nucleic acids. We performed a head-to-head comparison with the Cepheid Xpert CT/NG assay using clinician-collected, deidentified paired vaginal samples from a parent study that consecutively enrolled symptomatic and asymptomatic females over 18 years of age from the Ministry of Health and Medical Services Health Centers in Fiji.
View Article and Find Full Text PDFInteractions between EphB4 receptor tyrosine kinases and their membrane-bound ephrin-B2 ligands on apposed cells play a regulatory role in neural stem cell differentiation. With both receptor and ligand constrained to move within the membranes of their respective cells, this signaling system inevitably experiences spatial confinement and mechanical forces in conjunction with receptor-ligand binding. In this study, we reconstitute the EphB4-ephrin-B2 juxtacrine signaling geometry using a supported-lipid-bilayer system presenting laterally mobile and monomeric ephrin-B2 ligands to live neural stem cells.
View Article and Find Full Text PDFTo measure cell-to-cell variation in protein-mediated functions, we developed an approach to conduct ∼10(3) concurrent single-cell western blots (scWesterns) in ∼4 h. A microscope slide supporting a 30-μm-thick photoactive polyacrylamide gel enables western blotting: settling of single cells into microwells, lysis in situ, gel electrophoresis, photoinitiated blotting to immobilize proteins and antibody probing. We applied this scWestern method to monitor single-cell differentiation of rat neural stem cells and responses to mitogen stimulation.
View Article and Find Full Text PDFThere is broad interest in designing nanostructured materials that can interact with cells and regulate key downstream functions. In particular, materials with nanoscale features may enable control over multivalent interactions, which involve the simultaneous binding of multiple ligands on one entity to multiple receptors on another and are ubiquitous throughout biology. Cellular signal transduction of growth factor and morphogen cues (which have critical roles in regulating cell function and fate) often begins with such multivalent binding of ligands, either secreted or cell-surface-tethered to target cell receptors, leading to receptor clustering.
View Article and Find Full Text PDFMethods Mol Biol
February 2015
The activation of cellular signaling cascades, critical for regulating cell function and fate, often involves changes in the organization of receptors in the cell membrane. Using synthetic multivalent ligands to control the nanoscale organization of cellular receptors into clusters is an attractive approach to elicit desired downstream cellular responses, since multivalent ligands can be significantly more potent than their corresponding monovalent ligands. Synthetic multivalent ligands can serve as both versatile biological tools and potent nanoscale therapeutics, for example in applications to harness them to control stem cell fate in vitro and in vivo.
View Article and Find Full Text PDFOne of the greatest challenges in cell therapy is to minimally invasively deliver a large quantity of viable cells to a tissue of interest with high engraftment efficiency. Low and inefficient homing of systemically delivered mesenchymal stem cells (MSCs), for example, is thought to be a major limitation of existing MSC-based therapeutic approaches, caused predominantly by inadequate expression of cell surface adhesion receptors. Using a platform approach that preserves the MSC phenotype and does not require genetic manipulation, we modified the surface of MSCs with a nanometer-scale polymer construct containing sialyl Lewis(x) (sLe(x)) that is found on the surface of leukocytes and mediates cell rolling within inflamed tissue.
View Article and Find Full Text PDFEmbyroid body (EB) formation is a key step in many embryonic stem cell (ESC) differentiation protocols. The EB mimics the structure of the developing embryo, thereby providing a means of obtaining any cell lineage. Traditionally, the two methods of EB formation are suspension and hanging drop.
View Article and Find Full Text PDFCovalently conjugated sialyl Lewis X (SLeX) on the mesenchymal stem cell (MSC) surface through a biotin-streptavidin bridge imparts leukocyte-like rolling characteristics without altering the cell phenotype and the multilineage differentiation potential. We demonstrate that the conjugation of SLeX on the MSC surface is stable, versatile, and induces a robust rolling response on P-selectin coated substrates. These results indicate the potential to increase the targeting efficiency of any cell type to specific tissue.
View Article and Find Full Text PDF