Here, we report on a first-in-man trial where the tuberculosis (TB) vaccine Ag85B-ESAT-6 (H1) was adjuvanted with escalating doses of a novel liposome adjuvant CAF01. On their own, protein antigens cannot sufficiently induce immune responses in humans, and require the addition of an adjuvant system to ensure appropriate delivery and concomitant immune activation. To date no approved adjuvants are available for induction of cellular immunity, which seems essential for a number of vaccines, including vaccines against TB.
View Article and Find Full Text PDFNucleic Acids Res
February 2015
Identifying conserved and divergent response patterns in gene networks is becoming increasingly important. A common approach is integrating expression information with gene association networks in order to find groups of connected genes that are activated or repressed. In many cases, researchers are also interested in comparisons across species (or conditions).
View Article and Find Full Text PDFBiosynthesis and acquisition of nutrients during infection are integral to pathogenesis. Members of a metabolic pathway, the glycine cleavage system, have been identified in virulence screens of the intracellular bacterium Francisella tularensis but their role in pathogenesis remains unknown. This system generates 5,10-methylenetetrahydrofolate, a precursor of amino acid and DNA synthesis, from glycine degradation.
View Article and Find Full Text PDFFront Cell Infect Microbiol
April 2014
The highly infectious and deadly pathogen, Francisella tularensis, is classified by the CDC as a Category A bioterrorism agent. Inhalation of a single bacterium results in an acute pneumonia with a 30-60% mortality rate without treatment. Due to the prevalence of antibiotic resistance, there is a strong need for new types of antibacterial drugs.
View Article and Find Full Text PDFPneumonic tularemia is a potentially fatal disease caused by the Category A bioterrorism agent Francisella tularensis. Understanding the pulmonary immune response to this bacterium is necessary for developing effective vaccines and therapeutics. In this study, characterization of immune cell populations in the lungs of mice infected with the type A strain Schu S4 revealed a significant loss in natural killer (NK) cells over time.
View Article and Find Full Text PDFVaccination is a proven strategy to mitigate morbidity and mortality of infectious diseases. The methodology of identifying and testing new vaccine candidates could be improved with rational design and in vitro testing prior to animal experimentation. The tularemia vaccine, Francisella tularensis live vaccine strain (LVS), does not elicit complete protection against lethal challenge with a virulent type A Francisella strain.
View Article and Find Full Text PDFViral and bacterial infections of the lower respiratory tract are major causes of morbidity and mortality worldwide. Alveolar macrophages line the alveolar spaces and are the first cells of the immune system to respond to invading pathogens. To determine the similarities and differences between the responses of mice and macaques to invading pathogens we profiled alveolar macrophages from these species following infection with two viral (PR8 and Fuj/02 influenza A) and two bacterial (Mycobacterium tuberculosis and Francisella tularensis Schu S4) pathogens.
View Article and Find Full Text PDFTularemia is a debilitating febrile illness caused by the category A biodefense agent Francisella tularensis. This pathogen infects over 250 different hosts, has a low infectious dose, and causes high morbidity and mortality. Our understanding of the mechanisms by which F.
View Article and Find Full Text PDFFrancisella tularensis is the causative agent of tularemia and is classified as a category A biodefense agent by the Centers for Disease Control and Prevention because of its highly infectious nature. F. tularensis infects leukocytes and exhibits an extracellular phase in the blood of the host.
View Article and Find Full Text PDFThe pathogenesis of Francisella tularensis has been associated with this bacterium's ability to replicate within macrophages. F. tularensis can also invade and replicate in a variety of nonphagocytic host cells, including lung and kidney epithelial cells and hepatocytes.
View Article and Find Full Text PDFTularemia is caused by the category A biodefense agent Francisella tularensis. This bacterium is associated with diverse environments and a plethora of arthropod and mammalian hosts. How F.
View Article and Find Full Text PDFAltered microRNA (miRNA) expression profiles have been observed in numerous malignancies, including oral squamous cell carcinoma (OSCC). However, their role in disease is not entirely clear. Several genetic aberrations are characteristic of OSCC, with amplification of chromosomal band 11q13 and loss of distal 11q being among the most prevalent.
View Article and Find Full Text PDFBackground: After infecting a mammalian host, the facultative intracellular bacterium, Francisella tularensis, encounters an elevated environmental temperature. We hypothesized that this temperature change may regulate genes essential for infection.
Results: Microarray analysis of F.
Serratia marcescens is an emerging opportunistic pathogen with a remarkably broad host range. The cAMP-regulated catabolite repression system of S. marcescens has recently been identified and demonstrated to regulate biofilm formation through the production of surface adhesions.
View Article and Find Full Text PDFThe mechanisms by which environmental carbon sources regulate biofilm formation are poorly understood. This study investigates the roles of glucose and the catabolite repression system in Serratia marcescens biofilm formation. The abilities of this opportunistic pathogen to proliferate in a wide range of environments, to cause disease, and to resist antimicrobials are linked to its ability to form biofilms.
View Article and Find Full Text PDFOxyR is a conserved bacterial transcription factor with a regulatory role in oxidative stress response. From a genetic screen for genes that modulate biofilm formation in the opportunistic pathogen Serratia marcescens, mutations in an oxyR homolog and predicted fimbria structural genes were identified. S.
View Article and Find Full Text PDFFrancisella tularensis, the causative agent of tularemia and Category A biodefense agent, is known to replicate within host macrophages, though the pathogenesis of this organism is incompletely understood. We have isolated a variant of F. tularensis live vaccine strain (LVS) based on colony morphology and its effect on macrophages.
View Article and Find Full Text PDF