Publications by authors named "Dawn Livingstone"

Background And Purpose: Glucocorticoids are powerful anti-inflammatory drugs, but are associated with many side-effects. Topical application in atopic dermatitis leads to skin thinning, metabolic changes, and adrenal suppression. 5α-Tetrahydrocorticosterone (5αTHB) is a potential selective anti-inflammatory with reduced metabolic effects.

View Article and Find Full Text PDF

Decidualization is the hormone-dependent process of endometrial remodeling that is essential for fertility and reproductive health. It is characterized by dynamic changes in the endometrial stromal compartment including differentiation of fibroblasts, immune cell trafficking and vascular remodeling. Deficits in decidualization are implicated in disorders of pregnancy such as implantation failure, intra-uterine growth restriction, and pre-eclampsia.

View Article and Find Full Text PDF

Aims: High salt intake is common and contributes to poor cardiovascular health. Urinary sodium excretion correlates directly with glucocorticoid excretion in humans and experimental animals. We hypothesized that high salt intake activates the hypothalamic-pituitary-adrenal axis activation and leads to sustained glucocorticoid excess.

View Article and Find Full Text PDF

5α-Tetrahydrocorticosterone (5αTHB) is an effective topical anti-inflammatory agent in mouse, with less propensity to cause skin thinning and impede new blood vessel growth compared with corticosterone. Its anti-inflammatory effects were not prevented by RU38486, a glucocorticoid receptor antagonist, suggesting alternative mechanisms. The hypothesis that 5αTHB directly inhibits angiogenesis to a lesser extent than hydrocortisone was tested, focussing on glucocorticoid receptor mediated actions.

View Article and Find Full Text PDF

GPR81 (G-protein-coupled receptor 81) is highly expressed in adipocytes, and activation by the endogenous ligand lactate inhibits lipolysis. GPR81 is also expressed in the heart, liver, and kidney, but roles in nonadipose tissues are poorly defined. GPR81 agonists, developed to improve blood lipid profile, might also provide insights into GPR81 physiology.

View Article and Find Full Text PDF

Inhibition of 5α-reductases impairs androgen and glucocorticoid metabolism and induces insulin resistance in humans and rodents. The contribution of hepatic glucocorticoids to these adverse metabolic changes was assessed using a liver-selective glucocorticoid receptor (GR) antagonist, A-348441. Mice lacking 5α-reductase 1 (5αR1-KO) and their littermate controls were studied during consumption of a high-fat diet, with or without A-348441(120 mg/kg/d).

View Article and Find Full Text PDF

Glucocorticoids are potent inhibitors of angiogenesis in the rodent in vivo and in vitro but the mechanism by which this occurs has not been determined. Administration of glucocorticoids is used to treat a number of conditions in horses but the angiogenic response of equine vessels to glucocorticoids and, therefore, the potential role of glucocorticoids in pathogenesis and treatment of equine disease, is unknown. This study addressed the hypothesis that glucocorticoids would be angiostatic both in equine and murine blood vessels.

View Article and Find Full Text PDF

The enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) has an essential role in aldosterone target tissues, conferring aldosterone selectivity for the mineralocorticoid receptor (MR) by converting 11β-hydroxyglucocorticoids to inactive 11-ketosteroids. Congenital deficiency of 11β-HSD2 causes a form of salt-sensitive hypertension known as the syndrome of apparent mineralocorticoid excess. The disease phenotype, which ranges from mild to severe, correlates well with reduction in enzyme activity.

View Article and Find Full Text PDF

Use of topical glucocorticoid for inflammatory skin conditions is limited by systemic and local side-effects. This investigation addressed the hypothesis that topical 5α-tetrahydrocorticosterone (5αTHB, a corticosterone metabolite) inhibits dermal inflammation without affecting processes responsible for skin thinning and impaired wound healing. The topical anti-inflammatory properties of 5αTHB were compared with those of corticosterone in C57Bl/6 male mice with irritant dermatitis induced by croton oil, whereas its effects on angiogenesis, inflammation, and collagen deposition were investigated by subcutaneous sponge implantation.

View Article and Find Full Text PDF

Androgens are essential for male development and reproductive function. They are transported to their site of action as blood-borne endocrine hormones but can also be produced within tissues to act in intracrine and paracrine fashions. Because of this, circulating concentrations may not accurately reflect the androgenic influence within specific tissue microenvironments.

View Article and Find Full Text PDF

5α-Reductases irreversibly catalyse A-ring reduction of pregnene steroids, including glucocorticoids and androgens. Genetic disruption of 5α-reductase 1 in male mice impairs glucocorticoid clearance and predisposes to glucose intolerance and hepatic steatosis upon metabolic challenge. However, it is unclear whether this is driven by changes in androgen and/or glucocorticoid action.

View Article and Find Full Text PDF

The aim of treatment in congenital adrenal hyperplasia is to suppress excess adrenal androgens while achieving physiological glucocorticoid replacement. However, current glucocorticoid replacement regimes are inadequate because doses sufficient to suppress excess androgens almost invariably induce adverse metabolic effects. Although both cortisol and corticosterone are glucocorticoids that circulate in human plasma, any physiological role for corticosterone has been neglected.

View Article and Find Full Text PDF

Context: The mechanism of action of metformin remains unclear. Given the regulation of the cortisol-regenerating enzyme 11βhydroxysteroid dehydrogenase 1 (11βHSD1) by insulin and the limited efficacy of selective 11βHSD1 inhibitors to lower blood glucose when co-prescribed with metformin, we hypothesized that metformin reduces 11βHSD1 activity.

Objective: To determine whether metformin regulates 11βHSD1 activity in vivo in obese men with and without type 2 diabetes mellitus.

View Article and Find Full Text PDF

Context: Deficiency of aromatase, the enzyme that catalyzes the conversion of androgens to estrogens, is associated with insulin resistance in humans and mice.

Objective: We hypothesized that pharmacological aromatase inhibition results in peripheral insulin resistance in humans.

Design: This was a double-blind, randomized, controlled, crossover study.

View Article and Find Full Text PDF

5α-Reductase type 1 (5αR1) catalyses A-ring reduction of androgens and glucocorticoids in liver, potentially influencing hepatic manifestations of the metabolic syndrome. Male mice, homozygous for a disrupted 5αR1 allele (5αR1 knockout [KO] mice), were studied after metabolic (high-fat diet) and fibrotic (carbon tetrachloride [CCl4]) challenge. The effect of the 5α-reductase inhibitor finasteride on metabolism was investigated in male obese Zucker rats.

View Article and Find Full Text PDF

Patients with critical illness or hepatic failure exhibit impaired cortisol responses to ACTH, a phenomenon known as 'relative adrenal insufficiency'. A putative mechanism is that elevated bile acids inhibit inactivation of cortisol in liver by 5α-reductases type 1 and type 2 and 5β-reductase, resulting in compensatory downregulation of the hypothalamic-pituitary-adrenal axis and adrenocortical atrophy. To test the hypothesis that impaired glucocorticoid clearance can cause relative adrenal insufficiency, we investigated the consequences of 5α-reductase type 1 deficiency in mice.

View Article and Find Full Text PDF

Context: 5α-Reductase (5αR) types 1 and 2 catalyze the A-ring reduction of steroids, including androgens and glucocorticoids. 5α-R inhibitors lower dihydrotestosterone in benign prostatic hyperplasia; finasteride inhibits 5αR2, and dutasteride inhibits both 5αR2 and 5αR1. In rodents, loss of 5αR1 promotes fatty liver.

View Article and Find Full Text PDF

11β-Hydroxysteroid dehydrogenase type-1 (11β-HSD1) converts inert cortisone into active cortisol, amplifying intracellular glucocorticoid action. 11β-HSD1 deficiency improves cardiovascular risk factors in obesity but exacerbates acute inflammation. To determine the effects of 11β-HSD1 deficiency on atherosclerosis and its inflammation, atherosclerosis-prone apolipoprotein E-knockout (ApoE-KO) mice were treated with a selective 11β-HSD1 inhibitor or crossed with 11β-HSD1-KO mice to generate double knockouts (DKOs) and challenged with an atherogenic Western diet.

View Article and Find Full Text PDF

In aldosterone target tissues, 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2) is coexpressed with mineralocorticoid receptors (MR) and protects the receptor from activation by glucocorticoids. Null mutations in the encoding gene, HSD11B2, cause apparent mineralocorticoid excess, in which hypertension is thought to reflect volume expansion secondary to sodium retention. Hsd11b2(-/-) mice are indeed hypertensive, but impaired natriuretic capacity is associated with significant volume contraction, suggestive of a urine concentrating defect.

View Article and Find Full Text PDF

Recent trials show salicylates improve glycemic control in type 2 diabetes, but the mechanism is poorly understood. Expression of the glucocorticoid-generating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in adipose tissue is increased in vitro by proinflammatory cytokines and upregulated in obesity. 11β-HSD1 inhibition enhances insulin sensitivity.

View Article and Find Full Text PDF

Fetal growth restriction associates with increased risk of adult cardiometabolic and neuropsychiatric disorders. Both maternal malnutrition [notably a low-protein (LP) diet] and stress/glucocorticoid exposure reduce fetal growth and cause persisting abnormalities (programming) in adult offspring. Deficiency of placental 11β-hydroxysteroid dehydrogenase-2 (11β-HSD2), which inactivates glucocorticoids, is reduced by an LP diet and has been proposed as a unifying mechanism.

View Article and Find Full Text PDF

Context: Black South African women are less insulin sensitive than their White counterparts, despite less central and greater peripheral fat deposition. We hypothesized that this paradox may be explained, in part, by differences in the adipogenic capacity of sc adipose tissue (SAT).

Objective: Our objective was to measure adipogenic and lipogenic gene expression in abdominal and gluteal SAT depots and determine their relationships with insulin sensitivity (S(I)) in South African women.

View Article and Find Full Text PDF

Salt sensitivity of blood pressure is an independent risk factor for cardiovascular morbidity. Mechanistically, abnormal mineralocorticoid action and subclinical renal impairment may blunt the natriuretic response to high sodium intake, causing blood pressure to rise. 11β-Hydroxysteroid dehydrogenase type 2 (11βHSD2) controls ligand access to the mineralocorticoid receptor, and ablation of the enzyme causes severe hypertension.

View Article and Find Full Text PDF

The pathological mechanisms that distinguish simple steatosis from steatohepatitis (or NASH, with consequent risk of cirrhosis and hepatocellular cancer) remain incompletely defined. Whereas both a methionine- and choline-deficient diet (MCDD) and a choline-deficient diet (CDD) lead to hepatic triglyceride accumulation, MCDD alone is associated with hepatic insulin resistance and inflammation (steatohepatitis). We used metabolic tracer techniques, including stable isotope ([¹³C₄]palmitate) dilution and mass isotopomer distribution analysis (MIDA) of [¹³C₂]acetate, to define differences in intrahepatic fatty acid metabolism that could explain the contrasting effect of MCDD and CDD on NASH in C57Bl6 mice.

View Article and Find Full Text PDF

Background & Aims: Suppression of the hypothalamic-pituitary-adrenal axis occurs in cirrhosis and cholestasis and is associated with increased concentrations of bile acids. We investigated whether this was mediated through bile acids acting to impair steroid clearance by inhibiting glucocorticoid metabolism by 5beta-reductase.

Methods: The effect of bile acids on glucocorticoid metabolism was studied in vitro in hepatic subcellular fractions and hepatoma cells, allowing quantitation of the kinetics and transcript abundance of 5beta-reductase.

View Article and Find Full Text PDF