J Chromatogr A
February 2025
Given the complexities of continuous bioprocessing, it is critical to thoroughly investigate the process parameters unique to multi-column chromatography (MCC) and their potential impacts. However, existing studies have focused on either loading densities or residence time at steady states only, and their combined impact on critical quality attributes (CQAs) especially during transient phases were less known. In this study, we investigated the impact of critical process parameters during both steady-state and transient phases (start-up, close-down, and intermediate perturbation) through full factorial design.
View Article and Find Full Text PDFCultivated meat production offers solutions in addressing global food security and sustainability challenges. However, serum-free media (SFM) used in cultivating the cells are expensive, contributing to at least 50% of variable operating costs. This review explores technologies for cost-effective SFM, focusing on reducing cost from using growth factors and recombinant proteins, using affordable raw materials for basal media, and implementing cost-saving measures like media recycling and reducing waste build-up.
View Article and Find Full Text PDFA robust monoclonal antibody (mAb) bioprocess requires physiological parameters such as temperature, pH, or dissolved oxygen to be well-controlled as even small variations in them could potentially impact the final product quality. For instance, pH substantially affects N-glycosylation, protein aggregation, and charge variant profiles, as well as mAb productivity. However, relatively less is known about how pH jointly influences product quality and titer.
View Article and Find Full Text PDFSialic acids are sugars present in many animal glycoproteins and are of particular interest in biopharmaceuticals, where a lack of sialylation can reduce bioactivity. Here, we describe how α-2,6-sialyltransferase from can be used to markedly increase the level of sialylation of CHO-produced α-1-antitrypsin. Detailed analysis of the sialylation products showed that in addition to the expected α-2,6-sialylation of galactose, a second disialyl galactose motif Neu5Ac-α2,3(Neu5Ac-α2,6)Gal was produced, which, to our knowledge, had never been detected on a mammalian glycoprotein.
View Article and Find Full Text PDFWe explored the effects of media and clonal variation on the lactate shift which can be considered as one of the desirable features in CHO cell culture. Various culture profiles with the specific growth and antibody production rates under three different media conditions in two CHO producing clones were evaluated by resorting to multivariate statistical analysis. In most cases, glutamine depletion coincided with lactate consumption, suggesting that glutaminolysis rather than glycolysis was the preferred pathway for the pyruvate supply toward lactate production.
View Article and Find Full Text PDFOligosaccharides are generally considered to be un-utilized for growth of mammalian cells because their permeability across the cell membrane is low. However, in our previous study, we discovered that CHO and HEK293 cells consume maltose in culture media without serum and glucose. This is interesting because the transporter for maltose in mammalian cells has not been discovered to-date, and the only animal disaccharide transporter that is recently discovered is a sucrose transporter.
View Article and Find Full Text PDFMammalian cells are generally considered to be unable to utilize polysaccharides for cell growth because the phospholipid bilayer in the cell membrane has very low permeability to sugars. With the recent discovery of the only known animal disaccharide transporter, a sucrose transporter, we considered the potential use of polysaccharides as energy source, because that can impact biopharmaceutical manufacturing by potentially increasing carbohydrate loading in the culture medium and decreasing lactate accumulation. In this study, we found that mammalian cells can utilize maltose for growth in the absence of glucose and successfully adapted CHO-K1, CHO-DG44 and HEK293 cells to grow in glucose-free, maltose-containing serum-free protein-free media.
View Article and Find Full Text PDF