Publications by authors named "Dawn L DeHaro"

L1 elements can cause DNA damage and genomic variation via retrotransposition and the generation of endonuclease-dependent DNA breaks. These processes require L1 ORF2p protein that contains an endonuclease domain, which cuts genomic DNA, and a reverse transcriptase domain, which synthesizes cDNA. The complete impact of L1 enzymatic activities on genome stability and cellular function remains understudied, and the spectrum of L1-induced mutations, other than L1 insertions, is mostly unknown.

View Article and Find Full Text PDF

Expression of L1 mRNA, the first step in the L1 copy-and-paste amplification cycle, is a prerequisite for L1-associated genomic instability. We used a reported stringent bioinformatics method to parse L1 mRNA transcripts and measure the level of L1 mRNA expressed in mouse and rat organs at a locus-specific resolution. This analysis determined that mRNA expression of L1 loci in rodents exhibits striking organ specificity with less than 0.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers have created new methods (RNA-Seq and PACBio sequencing) to pinpoint specific L1 loci that actually produce unique L1-related RNA, separating them from related sequences within genes.
  • * Over 99% of L1-related RNA does not come from the L1 promoter; instead, it consists of fragments integrated into other cellular RNAs, with only a few active L1 loci being responsible for genuine L1 transcripts that vary by tissue type.
View Article and Find Full Text PDF

Background: Approximately 17 % of the human genome is comprised of the Long INterspersed Element-1 (LINE-1 or L1) retrotransposon, the only currently active autonomous family of retroelements. Though L1 elements have helped to shape mammalian genome evolution over millions of years, L1 activity can also be mutagenic and result in human disease. L1 expression has the potential to contribute to genomic instability via retrotransposition and DNA double-strand breaks (DSBs).

View Article and Find Full Text PDF

Background: LINE-1 (L1) retrotransposons are common occupants of mammalian genomes representing about a fifth of the genetic content. Ongoing L1 retrotransposition in the germ line and somatic tissues has contributed to structural genomic variations and disease-causing mutations in the human genome. L1 mobilization relies on the function of two, self-encoded proteins, ORF1 and ORF2.

View Article and Find Full Text PDF

Expression of the L1 retrotransposon can damage the genome through insertional mutagenesis and the generation of DNA double-strand breaks (DSBs). The majority of L1 loci in the human genome are 5'-truncated and therefore incapable of retrotransposition. While thousands of full-length L1 loci remain, most are retrotranspositionally-incompetent due to inactivating mutations.

View Article and Find Full Text PDF

Proteins that bind to the intracellular expanses, particularly cytoplasmic tail regions, of heptahelical integral membrane receptors are of particular interest in that they can mediate or modulate trafficking or intracellular signaling. In an effort to distinguish new proteins that might promote angiotensin II type 1 (AT(1)) receptor intracellular events, we screened a yeast 2-hybrid mouse brain library with the rat AT(1A) receptor (AT(1)R) carboxyl terminus and identified GABARAP, a protein involved in intracellular trafficking of the GABA(A) receptor, as a binding partner for the AT(1)R. Interaction of GABARAP with the AT(1)R carboxyl terminus was further substantiated using GST pull-down assays, and binding of the full-length tagged AT(1)R to GABARAP was verified using coimmunoprecipitation.

View Article and Find Full Text PDF