Luciferases catalyze light-emitting reactions that produce a rainbow of colors from their substrates (luciferins), molecular oxygen, and often additional cofactors. These bioluminescence (BL) systems have afforded an incredible variety of basic research and medical applications. Driven by the importance of BL-based non-invasive animal imaging (BLI) applications, especially in support of cancer research, new BL systems have been developed by engineering beetle luciferase (Luc) variants and synthetic substrate combinations to produce red to near-infrared (nIR) light to improve imaging sensitivity and resolution.
View Article and Find Full Text PDFEffective methods for monitoring eukaryotic gene expression and regulation based on bioluminescence - the emission of light by living organisms - are well established. Typically, the expression of a gene of interest is reported on with high sensitivity and over a wide dynamic range by the emission of light from a variety of engineered luciferase genes from beetles and marine organisms. The luciferase reporter genes are expressed downstream of the target gene or promoter and detected after exogenous addition of luciferin substrates.
View Article and Find Full Text PDFBeetle luciferases have been adapted for live cell imaging where bioluminescence is dependent on the cellular availability of ATP, O, and added luciferin. Previous Photinus pyralis red-emitting variants with high K values for ATP have performed disappointingly in live cells despite having much higher relative specific activities than enzymes like Click Beetle Red (CBR). We engineered a luciferase variant PLR3 having a K value for ATP similar to CBR and ∼2.
View Article and Find Full Text PDFFirefly luciferases, which emit visible light in a highly specific ATP-dependent process, have been adapted for a variety of applications, including gene reporter assays, whole-cell biosensor measurements, and in vivo imaging. We previously reported the approximately 2-fold enhanced activity and 1.4-fold greater bioluminescence quantum yield properties of a chimeric enzyme that contains the N-domain of Photinus pyralis luciferase joined to the C-domain of Luciola italica luciferase.
View Article and Find Full Text PDFCyclin-dependent kinase 6 (Cdk6) is a D-Cyclin-activated kinase that is directly involved in driving the cell cycle through inactivation of pRB in G₁ phase. Increasingly, evidence suggests that CDK6, while directly driving the cell cycle, may only be essential for proliferation of specialized cell types, agreeing with the notion that CDK6 also plays an important role in differentiation. Here, evidence is presented that CDK6 binds to and promotes degradation of the EYA2 protein.
View Article and Find Full Text PDFSeveral studies have recently reported that the cyclin dependent kinase (cdk) 6 oncogene plays a role in differentiation of a variety of cell types. This novel function expands the previously understood function of cdk6 as a regulator of G(1) phase of the cell cycle. The proposed mechanisms of these functions both require nuclear localization.
View Article and Find Full Text PDFAngiotensin II (Ang II) is a peptide hormone that, like many cytokines, acts as a proinflammatory agent and growth factor. After injury to the liver, the hormone assists in tissue repair by stimulating hepatocytes and hepatic stellate cells to synthesize extracellular matrix proteins and secrete secondary cytokines and by stimulating myofibroblasts to proliferate. However, under conditions of chronic liver injury, all of these effects conspire to promote pathologic liver fibrosis.
View Article and Find Full Text PDF