Understanding gene expression dynamics in the context of the time of day and temperature response is an important part of understanding plant thermotolerance in a changing climate. Performing "gating" experiments under constant conditions and light-dark cycles allows users to identify and dissect the contribution of the time of day and circadian clock to the dynamic nature of stress-responsive genes. Here, we describe the design of specific laboratory experiments in plants (Arabidopsis thaliana and bread wheat, Triticum aestivum) to investigate temporal responses to heat (1 h at 37 °C) or cold (3 h at 4 °C), and we include known marker genes that have circadian-gated responses to temperature changes.
View Article and Find Full Text PDFSorghum is one of the four major C4 crops that are considered to be tolerant to environmental extremes. Sorghum shows distinct growth responses to temperature stress depending on the sensitivity of the genetic background. About half of the transcripts in sorghum exhibit diurnal rhythmic expressions emphasizing significant coordination with the environment.
View Article and Find Full Text PDFPlant networks of oscillating genes coordinate internal processes with external cues, contributing to increased fitness. We hypothesized that the response to submergence stress may dynamically change during different times of the day. In this work, we determined the transcriptome (RNA sequencing) of the model monocotyledonous plant, , during a day of submergence stress, low light, and normal growth.
View Article and Find Full Text PDFThe circadian clock represents a critical regulatory network, which allows plants to anticipate environmental changes as inputs and promote plant survival by regulating various physiological outputs. Here, we examine the function of the clock-regulated transcription factor, CYCLING DOF FACTOR 6 (CDF6), during cold stress in . We found that the clock gates transcript accumulation in the vasculature during cold stress.
View Article and Find Full Text PDFThe circadian clock helps organisms to anticipate and coordinate gene regulatory responses to changes in environmental stimuli. Under stresses, both time of day and the circadian clock closely control the magnitude of plant responses. The identification of clock-regulated genes is, therefore, important when studying the influence of environmental factors.
View Article and Find Full Text PDFCurr Opin Plant Biol
December 2021
Diel changes in the environment are perceived by the circadian clock which transmits temporal information throughout the plant cell to synchronize daily and seasonal environmental signals with internal biological processes. Dynamic modulations of diverse levels of clock gene regulation within the plant cell are impacted by stress. Recent insights into circadian control of cellular processes such as alternative splicing, polyadenylation, and noncoding RNAs are discussed.
View Article and Find Full Text PDFThe circadian clock helps organisms to anticipate and coordinate gene regulatory responses to changes in environmental stimuli. Under growth limiting temperatures, the time of the day modulates the accumulation of polyadenylated mRNAs. In response to heat stress, plants will conserve energy and selectively translate mRNAs.
View Article and Find Full Text PDFThe circadian clock is found ubiquitously in nature, and helps organisms coordinate internal biological processes with environmental cues that inform the time of the day or year. Both temperature stress and the clock affect many important biological processes in plants. Specifically, clock-controlled gene regulation and growth are impacted by a compromised clock or heat stress.
View Article and Find Full Text PDFIn Arabidopsis, a large subset of heat responsive genes exhibits diurnal or circadian oscillations. However, to what extent the dimension of time and/or the circadian clock contribute to heat stress responses remains largely unknown. To determine the direct contribution of time of day and/or the clock to differential heat stress responses, we probed wild-type and mutants of the circadian clock genes CCA1, LHY, PRR7, and PRR9 following exposure to heat (37 °C) and moderate cold (10 °C) in the early morning (ZT1) and afternoon (ZT6).
View Article and Find Full Text PDFThe circadian clock in Arabidopsis exerts a critical role in timing multiple biological processes and stress responses through the regulation of up to 80% of the transcriptome. As a key component of the clock, the Myb-like transcription factor CIRCADIAN CLOCK ASSOCIATED1 (CCA1) is able to initiate and set the phase of clock-controlled rhythms and has been shown to regulate gene expression by binding directly to the evening element (EE) motif found in target gene promoters. However, the precise molecular mechanisms underlying clock regulation of the rhythmic transcriptome, specifically how clock components connect to clock output pathways, is poorly understood.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2014
In Arabidopsis, the circadian clock allows the plant to coordinate daily external signals with internal processes, conferring enhanced fitness and growth vigor. Although external cues such as temperature can entrain the clock, an important feature of the clock is the ability to maintain a relatively constant period over a range of physiological temperatures; this ability is referred to as "temperature compensation." However, how temperature actually is perceived and integrated into the clock molecular circuitry remains largely unknown.
View Article and Find Full Text PDFExtensive transcriptional networks play major roles in cellular and organismal functions. Transcript levels are in part determined by the combinatorial and overlapping functions of multiple transcription factors (TFs) bound to gene promoters. Thus, TF-promoter interactions provide the basic molecular wiring of transcriptional regulatory networks.
View Article and Find Full Text PDFEndogenous circadian rhythms regulate many aspects of an organism's behavior, physiology and development. These daily oscillations synchronize with the environment to generate robust rhythms, resulting in enhanced fitness and growth vigor in plants. Collective studies over the years have focused on understanding the transcription-based oscillator in Arabidopsis.
View Article and Find Full Text PDFMost of our understanding of plant genome structure and evolution has come from the careful annotation of small (e.g., 100 kb) sequenced genomic regions or from automated annotation of complete genome sequences.
View Article and Find Full Text PDFMiniature inverted repeat transposable elements (MITEs) are widespread in eukaryotic genomes, where they can attain high copy numbers despite a lack of coding capacity. However, little is known about how they originate and amplify. We performed a genome-wide screen of functional interactions between Stowaway MITEs and potential transposases in the rice genome and identified a transpositionally active MITE that possesses key properties that enhance transposition.
View Article and Find Full Text PDF