Publications by authors named "Dawn Field"

Systems biology promises to revolutionize medicine, yet human wellbeing is also inherently linked to healthy societies and environments (sustainability). The IDEA Consortium is a systems ecology open science initiative to conduct the basic scientific research needed to build use-oriented simulations (avatars) of entire social-ecological systems. Islands are the most scientifically tractable places for these studies and we begin with one of the best known: Moorea, French Polynesia.

View Article and Find Full Text PDF

Elevated nutrient levels can lead to excessive biofilm growth, but reducing nutrient pollution is often challenging. There is therefore interest in developing control measures for biofilm growth in nutrient-rich rivers that could act as complement to direct reductions in nutrient load. Shading of rivers is one option that can mitigate blooms, but few studies have experimentally examined the differences in biofilm communities grown under shaded and unshaded conditions.

View Article and Find Full Text PDF
Article Synopsis
  • * It is a global initiative that aims to generate a large and standardized data set through a coordinated effort on a single day.
  • * The commentary discusses the Consortium's goals for studying marine microbial communities and preserving their functional traits sustainably.
View Article and Find Full Text PDF

Earthworms are globally distributed and perform essential roles for soil health and microbial structure. We have investigated the effect of an anthropogenic contamination gradient on the bacterial community of the keystone ecological species Lumbricus rubellus through utilizing 16S rRNA pyrosequencing for the first time to establish the microbiome of the host and surrounding soil. The earthworm-associated microbiome differs from the surrounding environment which appears to be a result of both filtering and stimulation likely linked to the altered environment associated with the gut micro-habitat (neutral pH, anoxia and increased carbon substrates).

View Article and Find Full Text PDF

Lotic ecosystems such as rivers and streams are unique in that they represent a continuum of both space and time during the transition from headwaters to the river mouth. As microbes have very different controls over their ecology, distribution and dispersion compared with macrobiota, we wished to explore biogeographical patterns within a river catchment and uncover the major drivers structuring bacterioplankton communities. Water samples collected across the River Thames Basin, UK, covering the transition from headwater tributaries to the lower reaches of the main river channel were characterised using 16S rRNA gene pyrosequencing.

View Article and Find Full Text PDF

The Genomic Standards Consortium (GSC) is an open-membership community that was founded in 2005 to work towards the development, implementation and harmonization of standards in the field of genomics. Starting with the defined task of establishing a minimal set of descriptions the GSC has evolved into an active standards-setting body that currently has 18 ongoing projects, with additional projects regularly proposed from within and outside the GSC. Here we describe our recently enacted policy for proposing new activities that are intended to be taken on by the GSC, along with the template for proposing such new activities.

View Article and Find Full Text PDF

Microbes hold the key to life. They hold the secrets to our past (as the descendants of the earliest forms of life) and the prospects for our future (as we mine their genes for solutions to some of the planet's most pressing problems, from global warming to antibiotic resistance). However, the piecemeal approach that has defined efforts to study microbial genetic diversity for over 20 years and in over 30,000 genome projects risks squandering that promise.

View Article and Find Full Text PDF

Sampling ecosystems, even at a local scale, at the temporal and spatial resolution necessary to capture natural variability in microbial communities are prohibitively expensive. We extrapolated marine surface microbial community structure and metabolic potential from 72 16S rRNA amplicon and 8 metagenomic observations using remotely sensed environmental parameters to create a system-scale model of marine microbial metabolism for 5904 grid cells (49 km(2)) in the Western English Chanel, across 3 years of weekly averages. Thirteen environmental variables predicted the relative abundance of 24 bacterial Orders and 1715 unique enzyme-encoding genes that encode turnover of 2893 metabolites.

View Article and Find Full Text PDF

The co-authors of this paper hereby state their intention to work together to launch the Genomic Observatories Network (GOs Network) for which this document will serve as its Founding Charter. We define a Genomic Observatory as an ecosystem and/or site subject to long-term scientific research, including (but not limited to) the sustained study of genomic biodiversity from single-celled microbes to multicellular organisms.An international group of 64 scientists first published the call for a global network of Genomic Observatories in January 2012.

View Article and Find Full Text PDF

Metagenomics is a relatively recently established but rapidly expanding field that uses high-throughput next-generation sequencing technologies to characterize the microbial communities inhabiting different ecosystems (including oceans, lakes, soil, tundra, plants and body sites). Metagenomics brings with it a number of challenges, including the management, analysis, storage and sharing of data. In response to these challenges, we have developed a new metagenomics resource (http://www.

View Article and Find Full Text PDF

This viewpoint paper explores the potential of genomics technology to provide accurate, rapid, and cost efficient observations of the marine environment. The use of such approaches in next generation marine monitoring programs will help achieve the goals of marine legislation implemented world-wide. Genomic methods can yield faster results from monitoring, easier and more reliable taxonomic identification, as well as quicker and better assessment of the environmental status of marine waters.

View Article and Find Full Text PDF

Biodiversity informatics plays a central enabling role in the research community's efforts to address scientific conservation and sustainability issues. Great strides have been made in the past decade establishing a framework for sharing data, where taxonomy and systematics has been perceived as the most prominent discipline involved. To some extent this is inevitable, given the use of species names as the pivot around which information is organised.

View Article and Find Full Text PDF

Do bacterial taxa demonstrate clear endemism, like macroorganisms, or can one site's bacterial community recapture the total phylogenetic diversity of the world's oceans? Here we compare a deep bacterial community characterization from one site in the English Channel (L4-DeepSeq) with 356 datasets from the International Census of Marine Microbes (ICoMM) taken from around the globe (ranging from marine pelagic and sediment samples to sponge-associated environments). At the L4-DeepSeq site, increasing sequencing depth uncovers greater phylogenetic overlap with the global ICoMM data. This site contained 31.

View Article and Find Full Text PDF
Article Synopsis
  • A workshop held at the University of Oxford from February 27-29, 2012, brought together experts from four countries to align biodiversity standards, specifically Darwin Core and MIxS.
  • The event resulted in the creation of reference mappings, test expressions in RDF, and discussions on controlled vocabulary usage for both GBIF and GSC.
  • Participants began prototyping extensions for publishing genomic biodiversity data to the GBIF network and started translations of key documents into Japanese and Chinese while identifying five genomic repositories, including the SILVA rRNA database, for future collaboration.
View Article and Find Full Text PDF

Building on the planning efforts of the RCN4GSC project, a workshop was convened in San Diego to bring together experts from genomics and metagenomics, biodiversity, ecology, and bioinformatics with the charge to identify potential for positive interactions and progress, especially building on successes at establishing data standards by the GSC and by the biodiversity and ecological communities. Until recently, the contribution of microbial life to the biomass and biodiversity of the biosphere was largely overlooked (because it was resistant to systematic study). Now, emerging genomic and metagenomic tools are making investigation possible.

View Article and Find Full Text PDF

Variability in the extent of the descriptions of data ('metadata') held in public repositories forces users to assess the quality of records individually, which rapidly becomes impractical. The scoring of records on the richness of their description provides a simple, objective proxy measure for quality that enables filtering that supports downstream analysis. Pivotally, such descriptions should spur on improvements.

View Article and Find Full Text PDF

This report details the outcome of the 13(th) Meeting of the Genomic Standards Consortium. The three-day conference was held at the Kingkey Palace Hotel, Shenzhen, China, on March 5-7, 2012, and was hosted by the Beijing Genomics Institute. The meeting, titled From Genomes to Interactions to Communities to Models, highlighted the role of data standards associated with genomic, metagenomic, and amplicon sequence data and the contextual information associated with the sample.

View Article and Find Full Text PDF

Background: Computing of sequence similarity results is becoming a limiting factor in metagenome analysis. Sequence similarity search results encoded in an open, exchangeable format have the potential to limit the needs for computational reanalysis of these data sets. A prerequisite for sharing of similarity results is a common reference.

View Article and Find Full Text PDF

Metagenomics holds enormous promise for discovering novel enzymes and organisms that are biomarkers or drivers of processes relevant to disease, industry and the environment. In the past two years, we have seen a paradigm shift in metagenomics to the application of cross-sectional and longitudinal studies enabled by advances in DNA sequencing and high-performance computing. These technologies now make it possible to broadly assess microbial diversity and function, allowing systematic investigation of the largely unexplored frontier of microbial life.

View Article and Find Full Text PDF

Microbial ecology has been enhanced greatly by the ongoing 'omics revolution, bringing half the world's biomass and most of its biodiversity into analytical view for the first time; indeed, it feels almost like the invention of the microscope and the discovery of the new world at the same time. With major microbial ecology research efforts accumulating prodigious quantities of sequence, protein, and metabolite data, we are now poised to address environmental microbial research at macro scales, and to begin to characterize and understand the dimensions of microbial biodiversity on the planet. What is currently impeding progress is the need for a framework within which the research community can develop, exchange and discuss predictive ecosystem models that describe the biodiversity and functional interactions.

View Article and Find Full Text PDF

Understanding the interactions between the Earth's microbiome and the physical, chemical and biological environment is a fundamental goal of microbial ecology. We describe a bioclimatic modeling approach that leverages artificial neural networks to predict microbial community structure as a function of environmental parameters and microbial interactions. This method was better at predicting observed community structure than were any of several single-species models that do not incorporate biotic interactions.

View Article and Find Full Text PDF

Background: A steep drop in the cost of next-generation sequencing during recent years has made the technology affordable to the majority of researchers, but downstream bioinformatic analysis still poses a resource bottleneck for smaller laboratories and institutes that do not have access to substantial computational resources. Sequencing instruments are typically bundled with only the minimal processing and storage capacity required for data capture during sequencing runs. Given the scale of sequence datasets, scientific value cannot be obtained from acquiring a sequencer unless it is accompanied by an equal investment in informatics infrastructure.

View Article and Find Full Text PDF

To make full use of research data, the bioscience community needs to adopt technologies and reward mechanisms that support interoperability and promote the growth of an open 'data commoning' culture. Here we describe the prerequisites for data commoning and present an established and growing ecosystem of solutions using the shared 'Investigation-Study-Assay' framework to support that vision.

View Article and Find Full Text PDF

We are entering a new era in genomics-that of large-scale, place-based, highly contextualized genomic research. Here we review this emerging paradigm shift and suggest that sites of utmost scientific importance be expanded into 'Genomic Observatories' (GOs). Investment in GOs should focus on the digital characterization of whole ecosystems, from all-taxa biotic inventories to time-series 'omics studies.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiontbs8nnsstonkfv2airu8f4qfiq7lfgu7): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once