This paper describes a very simple and robust microfluidic device for digitizing samples into an array of discrete volumes. The device is based on an inherent fluidic phenomenon, where an incoming aqueous sample divides itself into an array of chambers that have been primed with an immiscible phase. Self-digitization of sample volumes results from the interplay between fluidic forces, interfacial tension, channel geometry, and the final stability of the digitized samples in the chambers.
View Article and Find Full Text PDFThe concept of syncrystallization was reinvestigated by focusing on phthalic acid (PA) grown with methyl red (MR). Crystals are alternately red and yellow in adjacent growth sectors. X-ray structures of MR and its cocrystals, revealing MR in the neutral, zwitterionic, and protonated states, as well as measurements of linear birefringence and linear dichroism of mixed crystals, were used to investigate mechanisms of PA coloring.
View Article and Find Full Text PDFFive polymorphic forms of tranilast were characterized by thermal, diffractometric, and spectroscopic techniques. The crystal structures of the most stable anhydrous form (Form I), a chloroform solvate, and a dichloromethane solvate were determined from single-crystal X-ray analysis. Two additional anhydrous forms of tranilast (Forms II and III) were also studied, but were not amenable to SCXRD.
View Article and Find Full Text PDF