Publications by authors named "Dawn Demeo"

Background/objectives: Both aging and chronic obstructive pulmonary disease (COPD) are strongly associated with changes in the metabolome; however, it is unknown whether there are common aging/COPD metabolomic signatures and if accelerated aging is associated with COPD.

Methods: Plasma from 5704 subjects from the Genetic Epidemiology of COPD study (COPDGene) and 2449 subjects from Subpopulations and intermediate outcome measures in COPD study (SPIROMICS) were profiled using the Metabolon global metabolomics platform (1013 annotated metabolites). Post-bronchodilator spirometry measures of airflow obstruction (forced expiratory volume at one second (FEV)/forced vital capacity (FVC) < 0.

View Article and Find Full Text PDF

Background: Chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) are debilitating diseases associated with divergent histopathological changes in the lungs. At present, due to cost and technical limitations, profiling cell types is not practical in large epidemiology cohorts (n > 1000). Here, we used computational deconvolution to identify cell types in COPD and IPF lungs whose abundances and cell type-specific gene expression are associated with disease diagnosis and severity.

View Article and Find Full Text PDF
Article Synopsis
  • Accelerated decline in lung function is linked to chronic respiratory diseases, and while genetics play a role, few genetic connections have been found.
  • This study aimed to investigate genetic variants associated with lung function decline using genome-wide association studies (GWAS) across diverse populations in multiple cohorts.
  • They identified 361 significant genetic variants potentially related to lung function declines, with some replicated in additional cohorts, indicating strong genetic influences on respiratory health.
View Article and Find Full Text PDF
Sex, Gender, and COPD.

Annu Rev Physiol

November 2024

Sex and gender have emerged as critical considerations relevant to chronic obstructive pulmonary disease (COPD). Sex differences in lung development and physiologic response to hormones and environmental exposures influence COPD susceptibility, progression, severity, morbidity, and mortality. Gender has been poorly measured in the context of COPD, and gendered exposures further impact biology.

View Article and Find Full Text PDF

There is increasing recognition that the sex chromosomes, X and Y, play an important role in health and disease that goes beyond the determination of biological sex. Loss of the Y chromosome (LOY) in blood, which occurs naturally in aging men, has been found to be a driver of cardiac fibrosis and heart failure mortality. LOY also occurs in most solid tumors in males and is often associated with worse survival, suggesting that LOY may give tumor cells a growth or survival advantage.

View Article and Find Full Text PDF

Innate immune responses such as phagocytosis are critically linked to the generation of adaptive immune responses against the neoantigens in cancer and the efferocytosis that is essential for homeostasis in diseases characterized by lung injury, inflammation, and remodeling as in chronic obstructive pulmonary disease (COPD). Chitinase 3-like-1 (CHI3L1) is induced in many cancers where it inhibits adaptive immune responses by stimulating immune checkpoint molecules (ICPs) and portends a poor prognosis. CHI3L1 is also induced in COPD where it regulates epithelial cell death.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers investigated blood protein networks in chronic obstructive pulmonary disease (COPD) using data from over 3,000 participants to better understand complex interconnections rather than just individual biomarker changes.
  • They applied advanced techniques to analyze 4,776 proteins, identifying significant networks linked to factors like smoking status and emphysema.
  • The study found both known and new proteins associated with COPD, highlighting the importance of these networks in understanding the disease across different ethnic groups, with some results replicating in another study cohort.
View Article and Find Full Text PDF

Rationale: Identification and validation of circulating biomarkers for lung function decline in COPD remains an unmet need.

Objective: Identify prognostic and dynamic plasma protein biomarkers of COPD progression.

Methods: We measured plasma proteins using SomaScan from two COPD-enriched cohorts, the Subpopulations and Intermediate Outcomes Measures in COPD Study (SPIROMICS) and Genetic Epidemiology of COPD (COPDGene), and one population-based cohort, Multi-Ethnic Study of Atherosclerosis (MESA) Lung.

View Article and Find Full Text PDF

Background: Beyond exposure to cigarette smoking and aging, the factors that influence lung function decline to incident chronic obstructive pulmonary disease (COPD) remain unclear. Advancements have been made in categorizing COPD into emphysema and airway predominant disease subtypes; however, predicting which healthy individuals will progress to COPD is difficult because they can exhibit profoundly different disease trajectories despite similar initial risk factors. This study aimed to identify clinical, genetic, and radiological features that are directly linked-and subsequently predict-abnormal lung function.

View Article and Find Full Text PDF

Gene regulatory networks (GRNs) are effective tools for inferring complex interactions between molecules that regulate biological processes and hence can provide insights into drivers of biological systems. Inferring coexpression networks is a critical element of GRN inference, as the correlation between expression patterns may indicate that genes are coregulated by common factors. However, methods that estimate coexpression networks generally derive an aggregate network representing the mean regulatory properties of the population and so fail to fully capture population heterogeneity.

View Article and Find Full Text PDF

Background: Lung adenocarcinoma (LUAD) has been observed to have significant sex differences in incidence, prognosis, and response to therapy. However, the molecular mechanisms responsible for these disparities have not been investigated extensively.

Methods: Sample-specific gene regulatory network methods were used to analyze RNA sequencing data from non-cancerous human lung samples from The Genotype Tissue Expression Project (GTEx) and lung adenocarcinoma primary tumor samples from The Cancer Genome Atlas (TCGA); results were validated on independent data.

View Article and Find Full Text PDF

Compared to men, women often develop COPD at an earlier age with worse respiratory symptoms despite lower smoking exposure. However, most preventive, and therapeutic strategies ignore biological sex differences in COPD. Our goal was to better understand sex-specific gene regulatory processes in lung tissue and the molecular basis for sex differences in COPD onset and severity.

View Article and Find Full Text PDF

Coronary artery calcium (CAC) is a marker of subclinical atherosclerosis and is a complex heritable trait with both genetic and environmental risk factors, including sex and smoking. We performed genome-wide association (GWA) analyses for CAC among all participants and stratified by sex in the COPDGene study ( = 6144 participants of European ancestry and = 2589 participants of African ancestry) with replication in the Diabetes Heart Study (DHS). We adjusted for age, sex, current smoking status, BMI, diabetes, self-reported high blood pressure, self-reported high cholesterol, and genetic ancestry (as summarized by principal components computed within each racial group).

View Article and Find Full Text PDF

Aging is the primary risk factor for many individual cancer types, including lung adenocarcinoma (LUAD). To understand how aging-related alterations in the regulation of key cellular processes might affect LUAD risk and survival outcomes, we built individual (person)-specific gene regulatory networks integrating gene expression, transcription factor protein-protein interaction, and sequence motif data, using PANDA/LIONESS algorithms, for both non-cancerous lung tissue samples from the Genotype Tissue Expression (GTEx) project and LUAD samples from The Cancer Genome Atlas (TCGA). In GTEx, we found that pathways involved in cell proliferation and immune response are increasingly targeted by regulatory transcription factors with age; these aging-associated alterations are accelerated by tobacco smoking and resemble oncogenic shifts in the regulatory landscape observed in LUAD and suggests that dysregulation of aging pathways might be associated with an increased risk of LUAD.

View Article and Find Full Text PDF

Objective: Optimism and purpose in life are associated with improved health outcomes. More information is needed on biological mechanisms, including immunosenescence. We investigated if psychological well-being is associated with healthier immunosenescence-related measures including naïve and terminally differentiated CD4 and CD8 T cell percentages, CD4:CD8, and cytomegalovirus (CMV) IgG response.

View Article and Find Full Text PDF

Clonal hematopoiesis of indeterminate potential (CHIP), whereby somatic mutations in hematopoietic stem cells confer a selective advantage and drive clonal expansion, not only correlates with age but also confers increased risk of morbidity and mortality. Here, we leverage genetically predicted traits to identify factors that determine CHIP clonal expansion rate. We used the passenger-approximated clonal expansion rate method to quantify the clonal expansion rate for 4,370 individuals in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) cohort and calculated polygenic risk scores for DNA methylation aging, inflammation-related measures and circulating protein levels.

View Article and Find Full Text PDF

Chronic Obstructive Pulmonary Disease (COPD) is a heterogeneous, chronic inflammatory process of the lungs and, like other complex diseases, is caused by both genetic and environmental factors. Detailed understanding of the molecular mechanisms of complex diseases requires the study of the interplay among different biomolecular layers, and thus the integration of different omics data types. In this study, we investigated COPD-associated molecular mechanisms through a correlation-based network integration of lung tissue RNA-seq and DNA methylation data of COPD cases (n = 446) and controls (n = 346) derived from the Lung Tissue Research Consortium.

View Article and Find Full Text PDF

Clonal hematopoiesis (CH) is characterized by the acquisition of a somatic mutation in a hematopoietic stem cell that results in a clonal expansion. These driver mutations can be single nucleotide variants in cancer driver genes or larger structural rearrangements called mosaic chromosomal alterations (mCAs). The factors that influence the variations in mCA fitness and ultimately result in different clonal expansion rates are not well understood.

View Article and Find Full Text PDF

Mosaic loss of Y (mLOY) is the most common somatic chromosomal alteration detected in human blood. The presence of mLOY is associated with altered blood cell counts and increased risk of Alzheimer's disease, solid tumors, and other age-related diseases. We sought to gain a better understanding of genetic drivers and associated phenotypes of mLOY through analyses of whole genome sequencing of a large set of genetically diverse males from the Trans-Omics for Precision Medicine (TOPMed) program.

View Article and Find Full Text PDF
Article Synopsis
  • Chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) are lung diseases that exhibit different cellular types and gene expressions, impacting disease diagnosis and severity.* -
  • A study analyzed RNA-seq data from over 1,000 lung tissue samples to investigate the abundance and gene expression of thirty-eight cell types related to COPD and IPF.* -
  • Findings revealed that certain cell types, such as aberrant basaloid cells and macrophages, were linked to disease severity, with notable differences in cell populations between IPF, COPD, and control subjects.*
View Article and Find Full Text PDF