Oncolytic adenoviral vectors selectively replicate in and lyse human tumor cells, providing a promising means for targeted tumor destruction. However, oncolytic vectors have limited capacity for incorporation of additional genetic material that could encode therapeutic transgenes and/or transcriptional regulatory control elements to augment the efficacy and/or safety of the vector. Therefore, we hypothesized that coadministration of an oncolytic vector with a replication-defective, gutless adenoviral vector encoding a therapeutic transgene would result in replication of both vectors within a tumor and potentiate antitumor efficacy relative to the use of either vector alone.
View Article and Find Full Text PDFAdenoviral vectors devoid of all viral coding regions are referred to by many names, including gutless vectors. Gutless vectors display reduced toxicity and immunogenicity, increased duration of transgene expression, and increased coding capacity compared to early generation vectors, which contain the majority of the viral backbone genes. However, the production of gutless vectors at a scale and purity suitable for clinical use has limited the utility of this technology.
View Article and Find Full Text PDF