In this Focus article, the authors ask a seemingly simple question: Are harmful algal blooms (HABs) becoming the greatest inland water quality threat to public health and aquatic ecosystems? When HAB events require restrictions on fisheries, recreation, and drinking water uses of inland water bodies significant economic consequences result. Unfortunately, the magnitude, frequency, and duration of HABs in inland waters are poorly understood across spatiotemporal scales and differentially engaged among states, tribes, and territories. Harmful algal bloom impacts are not as predictable as those from conventional chemical contaminants, for which water quality assessment and management programs were primarily developed, because interactions among multiple natural and anthropogenic factors determine the likelihood and severity to which a HAB will occur in a specific water body.
View Article and Find Full Text PDFIn order to further our understanding of the influence of chemical components and ultimately specific sources of atmospheric particulate matter (PM) on pro-inflammatory and other adverse cellular responses, we promulgate and apply a suite of chemical fractionation tools to aqueous aerosol extracts of PM samples for analysis in toxicity assays. We illustrate the approach with a study that used water extracts of quasi-ultrafine PM (PM0.25) collected in the Los Angeles Basin.
View Article and Find Full Text PDFIn this study a sensitive macrophage-based in vitro reactive oxygen species (ROS) assay was coupled with chemical fractionation tools and a year-long sampling program to further our understanding of the role of water-soluble metals in aerosol toxicity. The location is the polluted urban environment of Lahore, Pakistan, where we collected 24 h PM10 and PM2.5 samples every 6(th) day from January 2007 through January 2008.
View Article and Find Full Text PDF