Publications by authors named "Dawid Krzempek"

Purpose: With the increasing use of proton therapy, there is a growing emphasis on including radiation quality, often quantified by linear energy transfer, as a treatment plan optimization factor. The Timepix detectors offer energy-sensitive particle tracking useful for the characterization of proton linear energy transfer. To improve the detector's performance in mixed radiation fields produced in proton therapy, we customized the detector settings and performed the per-pixel energy calibration.

View Article and Find Full Text PDF

Applying a proton beam in radiotherapy enables precise irradiation of the tumor volume, but only for continuous assessment of changes in patient anatomy. Proton beam range uncertainties in the treatment process may originate not only from physical beam properties but also from patient-specific factors such as tumor shrinkage, edema formation and sinus filling, which are not incorporated in tumor volume safety margins. In this paper, we evaluated variations in dose distribution in proton therapy resulting from the differences observed in the control tomographic images and the dosimetric influence of applied adaptive treatment.

View Article and Find Full Text PDF

Nano-sized radiosensitizers can be used to increase the effectiveness of radiation-based anticancer therapies. In this study, bimetallic, ~30 nm palladium-platinum nanoparticles (PdPt NPs) with different nanostructures (random nano-alloy NPs and ordered core-shell NPs) were prepared. Scanning transmission electron microscopy (STEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDS), zeta potential measurements, and nanoparticle tracking analysis (NTA) were used to provide the physicochemical characteristics of PdPt NPs.

View Article and Find Full Text PDF

Since 2010, EURADOS Working Group 9 (Radiation Dosimetry in Radiotherapy) has been involved in the investigation of secondary and scattered radiation doses in X-ray and proton therapy, especially in the case of pediatric patients. The main goal of this paper is to analyze and compare out-of-field neutron and non-neutron organ doses inside 5- and 10-year-old pediatric anthropomorphic phantoms for the treatment of a 5-cm-diameter brain tumor. Proton irradiations were carried out at the Cyclotron Centre Bronowice in IFJ PAN Krakow Poland using a pencil beam scanning technique (PBS) at a gantry with a dedicated scanning nozzle (IBA Proton Therapy System, Proteus 235).

View Article and Find Full Text PDF

Purpose: Craniospinal irradiation (CSI) has greatly increased survival rates for patients with a diagnosis of medulloblastoma and other primitive neuroectodermal tumors. However, as it includes exposure of a large volume of healthy tissue to unwanted doses, there is a strong concern about the complications of the treatment, especially for the children. To estimate the risk of second cancers and other unwanted effects, out-of-field dose assessment is necessary.

View Article and Find Full Text PDF

Enhancing the effectiveness of colorectal cancer treatment is highly desirable. Radiation-based anticancer therapy-such as proton therapy (PT)-can be used to shrink tumors before subsequent surgical intervention; therefore, improving the effectiveness of this treatment is crucial. The addition of noble metal nanoparticles (NPs), acting as radiosensitizers, increases the PT therapeutic effect.

View Article and Find Full Text PDF

Proton radiotherapy requires precise knowledge of the volumetric dose distribution. In proton beam delivery systems, based on narrow pencil beams, a contribution from small doses in low-intensity regions, consisting mainly of scattered protons, may have not negligible influence on total dose delivered to patient. Insufficient information about dose profile can cause underestimation of dose and potential delivery of inflated dose during hadrontherapy treatment.

View Article and Find Full Text PDF

Purpose: To evaluate the effect on charge collection in the ionization chamber (IC) in proton pencil beam scanning (PBS), where the local dose rate may exceed the dose rates encountered in conventional MV therapy by up to three orders of magnitude.

Methods: We measured values of the ion recombination (k ) and polarity (k ) correction factors in water, for a plane-parallel Markus TM23343 IC, using the cyclotron-based Proteus-235 therapy system with an active proton PBS of energies 30-230 MeV. Values of k were determined from extrapolation of the saturation curve and the Two-Voltage Method (TVM), for planar fields.

View Article and Find Full Text PDF