Conjugation of a hydrophobic poly(2-oxazoline) bearing tertiary amide groups along its backbone with a short single stranded nucleotide sequence results in an amphiphilic comb/graft copolymer, which organizes in fibrils upon direct dissolution in water. Supported by circular dichroism, atomic force microscopy, transmission electron microscopy, and scattering data, fibrils are formed through inter- and intramolecular hydrogen bonding between hydrogen accepting amide groups along the polymer backbone and hydrogen donating nucleic acid grafts leading to the formation of hollow tubes.
View Article and Find Full Text PDFWe report herein on the polymer-crystallization-assisted thiol-ene photosynthesis of an amphiphilic comb/graft DNA copolymer, or molecular brush, composed of a hydrophobic poly(2-oxazoline) backbone and hydrophilic short single-stranded nucleic acid grafts. Coupling efficiencies are above 60% and thus higher as compared with the straight solid-phase-supported synthesis of amphiphilic DNA block copolymers. The DNA molecular brushes self-assemble into sub-micron-sized spherical structures in water as evidenced by light scattering as well as atomic force and electron microscopy imaging.
View Article and Find Full Text PDFThe formation of extracellular neuritic plaques in the brain of individuals who suffered from Alzheimer's disease (AD) is a major pathological hallmark. These plaques consist of filamentous aggregates of the amyloid beta (1-42) (Aβ42) proteins. Prevention or reduction of the formation of these fibrils is foreseen as a potential therapeutic approach.
View Article and Find Full Text PDFFor the very first time, highly efficient synthesis of DNA-peptide hybrids to scaffold self-assembled nanostructures is described. Oligonucleotide conjugation to the diphenylalanine dipeptide triggers a morphological transition from fibrillar to vesicular structures which may potentially be used as delivery vehicles, since they exhibit pH triggered release.
View Article and Find Full Text PDF