Publications by authors named "Dawid Grabarek"

The chromophore (CRO) of fluorescent proteins (FPs) is embedded in a complex environment that is a source of specific interactions with the CRO. Understanding how these interactions influence FPs spectral properties is important for a directed design of novel markers with desired characteristics. In this work, we apply computational chemistry methods to gain insight into one-, two- and three-photon absorption (1PA, 2PA, 3PA) tuning in enhanced green fluorescent protein (EGFP).

View Article and Find Full Text PDF

The spectral properties of fluorescent proteins (FPs) depend on the protein environment of the chromophore (CRO). A deeper understanding of the CRO - environment interactions in terms of FPs' spectral characteristics will allow for a rational design of novel markers with desired properties. Here, we are taking a step towards achieving this important goal.

View Article and Find Full Text PDF

The multiscale calculations involving excited states may suffer from the electron spill-out (ESO) problem. This seems to be especially the case when the environment of the core region, described with the electronic structure method, is approximated by a polarizable force field. The ESO effect often leads to incorrect physical character of electronic excitations, spreading outside the quantum region, which, in turn, results in erroneous absorption spectra.

View Article and Find Full Text PDF

We systematically investigate an impact of the size and content of a quantum (QM) region, treated at the density functional theory level, in embedding calculations on one- (OPA) and two-photon absorption (TPA) spectra of the following fluorescent proteins (FPs) models: green FP (avGFP) with neutral (avGFP-n) and anionic (avGFP-a) chromophore as well as Citrine FP. We find that amino acid (a.a.

View Article and Find Full Text PDF

Performance of DFT functionals with different percentages of exact Hartree-Fock exchange energy (EX) is assessed for recovery of the CC2 reference one- (OPA) and two-photon absorption (TPA) spectra of fluorescent proteins chromophores in vacuo. The investigated DFT functionals, together with their EX contributions are BLYP (0%), B3LYP (20%), B1LYP (25%), BHandHLYP (50%), and CAM-B3LYP (19% at short range and 65% at long range). Our test set consists of anionic and neutral chromophores as naturally occurring in the fluorescent proteins.

View Article and Find Full Text PDF

The initial S excited-state relaxation of retinal protonated Schiff base (RPSB) analog with central C11C12 double bond locked by eight-membered ring (locked-11.8) was investigated by means of multireference perturbation theory methods (XMCQDPT2, XMS-CASPT2, MS-CASPT2) as well as single-reference coupled-cluster CC2 method. The analysis of XMCQDPT2-based geometries reveals rather weak coupling between in-plane and out-of-plane structural evolution and minor energetical relaxation of three locked-11.

View Article and Find Full Text PDF

To account for systematic error of CASPT2 method empirical modification of the zeroth-order Hamiltonian with Ionization Potential-Electron Affinity (IPEA) shift was introduced. The optimized IPEA value (0.25 a.

View Article and Find Full Text PDF

This study provides gas-phase S excited-state geometries along with emission and adiabatic energies for methylated/demethylated and ring-locked analogues of protonated Schiff base retinal models comprising system of five conjugated double bonds (PSB5), using second order multiconfiguration perturbation theory (CASPT2). CASPT2 results serve as reference data to assess the performance of CC2 (second-order approximate coupled cluster singles and doubles) and a commonly used CASSCF/CASPT2 protocol, that is, complete active space self-consistent field (CASSCF) geometry optimization followed by CASPT2 energy calculation. We find that the CASSCF methodology fails to locate planar S minimum energy structures for four out of five investigated planar models in contrast to CC2 and CASPT2 methods.

View Article and Find Full Text PDF

The effect of the quality of the ground-state geometry on excitation energies in the retinal chromophore minimal model (PSB3) was systematically investigated using various single- (within Møller-Plesset and coupled-cluster frameworks) and multiconfigurational [within complete active space self-consistent field (CASSCF) and CASSCF-based perturbative approaches: second-order CASPT2 and third-order CASPT3] methods. Among investigated methods, only CASPT3 provides geometry in nearly perfect agreement with the CCSD(T)-based equilibrium structure. The second goal of the present study was to assess the performance of the CASPT2 methodology, which is popular in computational spectroscopy of retinals, in describing the excitation energies of low-lying excited states of PSB3 relative to CASPT3 results.

View Article and Find Full Text PDF