Dynamic contrast enhanced (DCE) MRI is a non-invasive imaging technique that has become a quantitative standard for assessing tumor microvascular permeability. Through the application of a pharmacokinetic (PK) model to a series of T1-weighed MR images acquired after an injection of a contrast agent, several vascular permeability parameters can be quantitatively estimated. These parameters, including K, a measure of capillary permeability, have been widely implemented for assessing tumor vascular function as well as tumor therapeutic response.
View Article and Find Full Text PDFBrain metastasis is the most common intracranial malignancy in adults. The prognosis is extremely poor, partly because most patients have more than one brain lesion, and the currently available therapies are nonspecific or inaccessible to those occult metastases due to an impermeable blood-tumor barrier (BTB). Phosphatidylserine (PS) is externalized on the surface of viable endothelial cells (ECs) in tumor blood vessels.
View Article and Find Full Text PDFTreatment of non-small cell lung cancer (NSCLC) has drastically changed in recent years owing to the robust anticancer effects of immune checkpoint inhibitors (ICI). However, only 20% of the patients with NSCLC benefit from ICIs, highlighting the need to uncover the mechanisms mediating resistance. By analyzing the overall survival (OS) and mutational profiles of 424 patients with NSCLC who received ICI treatments between 2015 and 2021, we determined that patients carrying a loss-of-function mutation in neurotrophic tyrosine kinase receptor 1 (NTRK1) had a prolonged OS when compared with patients with wild-type NTRK1.
View Article and Find Full Text PDFThe presence of cell surface protein CD47 allows cancer cells to evade innate and adaptive immune surveillance resulting in metastatic spread. CD47 binds to and activates SIRPα on the surface of myeloid cells, inhibiting their phagocytic activity. On the other hand, CD47 binds the matricellular protein Thrombospondin-1, limiting T-cell activation.
View Article and Find Full Text PDFThe purpose of this study is to further validate the utility of our previously developed CNN in an alternative small animal model of BM through transfer learning. Unlike the glioma model, the BM mouse model develops multifocal intracranial metastases, including both contrast enhancing and non-enhancing lesions on DCE MRI, thus serving as an excellent brain tumor model to study tumor vascular permeability. Here, we conducted transfer learning by transferring the previously trained GBM CNN to DCE MRI datasets of BM mice.
View Article and Find Full Text PDFDespite therapeutic advancements, the prognosis of locally advanced non-small cell lung cancer (LANSCLC), which has invaded multiple lobes or the other lung and intrapulmonary lymph nodes, remains poor. The emergence of immunotherapy with immune checkpoint blockade (ICB) is transforming cancer treatment. However, only a fraction of lung cancer patients benefit from ICB.
View Article and Find Full Text PDFThe brain is one of the most common metastatic sites among breast cancer patients, especially in those who have Her2-positive or triple-negative tumors. The brain microenvironment has been considered immune privileged, and the exact mechanisms of how immune cells in the brain microenvironment contribute to brain metastasis remain elusive. In this study, we found that neutrophils are recruited and influenced by c-Met high brain metastatic cells in the metastatic sites, and depletion of neutrophils significantly suppressed brain metastasis in animal models.
View Article and Find Full Text PDFThe epidermal growth factor receptor (EGFR) is a prime oncogene that is frequently amplified in glioblastomas. Here we demonstrate a new tumour-suppressive function of EGFR in EGFR-amplified glioblastomas regulated by EGFR ligands. Constitutive EGFR signalling promotes invasion via activation of a TAB1-TAK1-NF-κB-EMP1 pathway, resulting in large tumours and decreased survival in orthotopic models.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
March 2022
Background: Dynamic contrast-enhanced (DCE) MRI is widely used to assess vascular perfusion and permeability in cancer. In small animal applications, conventional modeling of pharmacokinetic (PK) parameters from DCE MRI images is complex and time consuming. This study is aimed at developing a deep learning approach to fully automate the generation of kinetic parameter maps, Ktrans (volume transfer coefficient) and Vp (blood plasma volume ratio), as a potential surrogate to conventional PK modeling in mouse brain tumor models based on DCE MRI.
View Article and Find Full Text PDFClinical evidence indicates that the microenvironment in malignant pleural effusion (MPE) is immunologically cold, which impairs tumour immunosurveillance and antitumor immune response to immune checkpoint blockade (ICB). In a recent issue of Nature Nanotechnology, Liu et al. demonstrate a new nanotechnological approach to effectively mitigate the immune cold MPE and provide insights into its mechanism of action through single-cell RNA-sequencing.
View Article and Find Full Text PDFMalignant pleural effusion (MPE) is indicative of terminal malignancy with a uniformly fatal prognosis. Often, two distinct compartments of tumour microenvironment, the effusion and disseminated pleural tumours, co-exist in the pleural cavity, presenting a major challenge for therapeutic interventions and drug delivery. Clinical evidence suggests that MPE comprises abundant tumour-associated myeloid cells with the tumour-promoting phenotype, impairing antitumour immunity.
View Article and Find Full Text PDFInhibition of RTK pathways in cancer triggers an adaptive response that promotes therapeutic resistance. Because the adaptive response is multifaceted, the optimal approach to blunting it remains undetermined. TNF upregulation is a biologically significant response to EGFR inhibition in NSCLC.
View Article and Find Full Text PDFMounting evidence suggests that the tumor microenvironment is profoundly immunosuppressive. Thus, mitigating tumor immunosuppression is crucial for inducing sustained antitumor immunity. Whereas previous studies involved intratumoral injection, we report here an inhalable nanoparticle-immunotherapy system targeting pulmonary antigen presenting cells (APCs) to enhance anticancer immunity against lung metastases.
View Article and Find Full Text PDFBackground: Glioblastoma (GBM) is the most common primary malignant adult brain tumor. Temozolomide (TMZ) is the standard of care and is most effective in GBMs that lack the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT). Moreover, even initially responsive tumors develop a secondary resistance to TMZ and become untreatable.
View Article and Find Full Text PDFPurpose: To assess early changes in brain metastasis in response to whole brain radiotherapy (WBRT) by longitudinal Magnetic Resonance Imaging (MRI).
Materials And Methods: Using a 7T system, MRI examinations of brain metastases in a breast cancer MDA-MD231-Br mouse model were conducted before and 24 hours after 3 daily fractionations of 4 Gy WBRT. Besides anatomic MRI, diffusion-weighted (DW) MRI and dynamic contrast-enhanced (DCE) MRI were applied to study cytotoxic effect and blood-tumor-barrier (BTB) permeability change, respectively.
Cerenkov luminescence imaging (CLI) is a relatively new imaging modality that utilizes conventional optical imaging instrumentation to detect Cerenkov radiation derived from standard and often clinically approved radiotracers. Its research versatility, low cost, and ease of use have increased its popularity within the molecular imaging community and at institutions that are interested in conducting radiotracer-based molecular imaging research, but that lack the necessary resources and infrastructure. Here, we provide a description of the materials and procedures necessary to conduct a Cerenkov luminescence imaging experiment using a variety of imaging instrumentation, radionuclides, and animal models.
View Article and Find Full Text PDFAlthough aberrant EGFR signaling is widespread in cancer, EGFR inhibition is effective only in a subset of non-small cell lung cancer (NSCLC) with EGFR activating mutations. A majority of NSCLCs express EGFR wild type (EGFRwt) and do not respond to EGFR inhibition. TNF is a major mediator of inflammation-induced cancer.
View Article and Find Full Text PDFPhosphatidylserine (PS), the most abundant anionic phospholipid in cell membrane, is strictly confined to the inner leaflet in normal cells. However, this PS asymmetry is found disruptive in many tumor vascular endothelial cells. We discuss the underlying mechanisms for PS asymmetry maintenance in normal cells and its loss in tumor cells.
View Article and Find Full Text PDFAberrant epidermal growth factor receptor (EGFR) signaling is widespread in cancer, making the EGFR an important target for therapy. EGFR gene amplification and mutation are common in glioblastoma (GBM), but EGFR inhibition has not been effective in treating this tumor. Here we propose that primary resistance to EGFR inhibition in glioma cells results from a rapid compensatory response to EGFR inhibition that mediates cell survival.
View Article and Find Full Text PDFPhosphatidylserine (PS), which is normally intracellular, becomes exposed on the outer surface of viable endothelial cells (ECs) of tumor vasculature. Utilizing a PS-targeting antibody, we have recently established a PS-targeted liposomal (PS-L) nanoplatform that has demonstrated to be highly tumor-selective. Because of the vascular lumen-exposed PS that is immediately accessible without a need to penetrate the intact blood brain barrier (BBB), we hypothesize that the systemically administered PS-L binds specifically to tumor vascular ECs, becomes subsequently internalized into the cells and then enables its cargos to be efficiently delivered to glioma parenchyma.
View Article and Find Full Text PDFObjective: To quantitatively study the impact of intrinsic tumor characteristics and microenvironmental factors on local tumor control after irradiation with carbon ((12)C-) ions and photons in an experimental prostate tumor model.
Material And Methods: Three sublines of a syngeneic rat prostate tumor (R3327) differing in grading (highly (-H) moderately (-HI) or anaplastic (-AT1)) were irradiated with increasing single doses of either (12)C-ions or 6 MV photons in Copenhagen rats. Primary endpoint was local tumor control within 300 days.
Constitutive activation of the EGFR is common in cancer due to EGFR wild-type (EGFRwt) overexpression or the presence of mutant EGFR. Signaling by constitutively active NSCLC EGFR mutants or the EGFRvIII mutant in glioblastoma has been studied intensively and the downstream signals are known. Normally, the EGFRwt is activated when it is exposed to ligand, resulting in activation of canonical signals such as ERK and Akt.
View Article and Find Full Text PDFContrast Media Mol Imaging
October 2016
The goal of this study is to evaluate a new (68) Ga-based imaging agent for detecting tumor hypoxia using positron emission tomography (PET). The new hypoxia targeting agent reported here, [(68) Ga]-HP-DO3A-nitroimidazole ([(68) Ga]-HP-DO3A-NI), was constructed by linking a nitroimidazole moiety with the macrocyclic ligand component of ProHance®, HP-DO3A. The hypoxia targeting capability of this agent was evaluated in A549 lung cancer cells in vitro and in SCID mice bearing subcutaneous A549 tumor xenografts.
View Article and Find Full Text PDF