Gelatin cryogels are good candidate scaffolds for tissue engineering because of their interconnected macroporous structure. For bone regeneration, inorganic components are chosen to reinforce gelatin cryogels: (i) to mimic the compositions of natural bone tissue and (ii) to meet the mechanical requirements of bone repairing. Cryogels were prepared from methacrylated gelatin (GelMA) in this study, and hydroxyapatite nanorods (HANRs) with surface-grafted acrylate groups (D-HANRs) were synthesized to reinforce the cryogels, in which, the crosslinking between GelMA and D-HANRs was expected.
View Article and Find Full Text PDFThe strategy of using multipotential stem cells like bone mesenchymal stromal cells (BMSCs) for nerve tissue engineering is proven feasible. The promotion effects on neural transdifferentiation of BMSCs from factors including nerve growth factor (NGF), laminin and electrical stimulation (ES) have been reported, while it is not known if these factors can achieve a strong synergetic impact when the cells are cultured on conductive substrates. In this study, it was identified that any single factor (NGF, laminin, or conductive substrate) combined with ES demonstrated the capacity to induce BMSCs transdifferentiating into neural cells, while the efficiency was found in the order of NGF > laminin > conductive substrate.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2014
To investigate nonautonomous matter waves with time-dependent modulation in a one-dimensional trapped spin-1 Bose-Einstein condensate, we hereby work on the generalized three-coupled Gross-Pitaevskii equations by means of the Hirota bilinear method. By modulating the external trap potential, atom gain or loss, and coupling coefficients, we can obtain several nonautonomous matter-wave solitons and rogue waves including "bright" and "dark" shapes and arrive at the following conclusions: (i) the external trap potential and atom gain or loss can influence the propagation of matter-wave solitons and the duration and frequency of bound solitonic interaction, but they have little effect on the head-on solitonic interaction; (ii) through numerical simulation, stable evolution of the matter-wave solitons is realized with a perturbation of 5% initial random noise, and the spin-exchange interaction of atoms can be affected by the time-dependent modulation; (iii) under the influence of a periodically modulated trap potential and periodic atom gain or loss, rogue waves can emerge in the superposition of localized character and periodic oscillating properties.
View Article and Find Full Text PDF