Since 2010, the Chinese economy has transitioned from a high-speed growth model to a high-quality development model. During this period, the logistics industry has witnessed rapid growth, leading to significant carbon emissions and posing severe threats to the ecological environment. To investigate the spatiotemporal variations in carbon emissions in China's logistics industry, we conducted a correlation analysis using Moran's index and a bivariate spatial autocorrelation model from 2010 to 2021.
View Article and Find Full Text PDFThe interrelation and complementary nature of multi-omics data can provide valuable insights into the intricate molecular mechanisms underlying diseases. However, challenges such as limited sample size, high data dimensionality and differences in omics modalities pose significant obstacles to fully harnessing the potential of these data. The prior knowledge such as gene regulatory network and pathway information harbors useful gene-gene interaction and gene functional module information.
View Article and Find Full Text PDFThe rapid development of society and economy has resulted in a substantial increase in energy consumption, consequently exacerbating pollution issues. Current research predominantly focuses on energy-saving and emission reduction in road transportation within individual cities or the three major economic regions of China:the Yangtze River Delta, the Pearl River Delta, and the Beijing-Tianjin-Hebei Region. However, there is a dearth of studies addressing the southeastern coastal economic region.
View Article and Find Full Text PDFThe leaping forward of the economy has promoted the rapid growth of road traffic demand, resulting in the carbon emissions of road traffic increasing significantly. It is well known that a one-size-fits-all emission reduction policy is not feasible. Therefore, conducting an investigation on the carbon emissions of all provincial-level regions within a country can assist the government in formulating carbon emission policies at a macro level tailored to different regions.
View Article and Find Full Text PDFIEEE Trans Image Process
August 2015
Studies in neuroscience and biological vision have shown that the human retina has strong computational power, and its information representation supports vision tasks on both ventral and dorsal pathways. In this paper, a new local image descriptor, termed distinctive efficient robust features (DERF), is derived by modeling the response and distribution properties of the parvocellular-projecting ganglion cells in the primate retina. DERF features exponential scale distribution, exponential grid structure, and circularly symmetric function difference of Gaussian (DoG) used as a convolution kernel, all of which are consistent with the characteristics of the ganglion cell array found in neurophysiology, anatomy, and biophysics.
View Article and Find Full Text PDF