While transcriptome- and proteome-wide technologies to assess processes in protein biogenesis are now widely available, we still lack global approaches to assay post-ribosomal biogenesis events, in particular those occurring in the eukaryotic secretory system. We here develop a method, SECRiFY, to simultaneously assess the secretability of >10 protein fragments by two yeast species, S. cerevisiae and P.
View Article and Find Full Text PDFSummary: Protein-protein interaction (PPI) studies have dramatically expanded our knowledge about cellular behaviour and development in different conditions. A multitude of high-throughput PPI techniques have been developed to achieve proteome-scale coverage for PPI studies, including the microarray based Mammalian Protein-Protein Interaction Trap (MAPPIT) system. Because such high-throughput techniques typically report thousands of interactions, managing and analysing the large amounts of acquired data is a challenge.
View Article and Find Full Text PDFProtein phosphorylation is one of the most common post-translational modifications (PTMs), which can regulate protein activity and localization as well as protein-protein interactions in numerous cellular processes. Phosphopeptide enrichment techniques enable plant researchers to acquire insight into phosphorylation-controlled signaling networks in various plant species. Most phosphoproteome analyses of plant samples still involve stable isotope labeling, peptide fractionation, and demand a lot of mass spectrometry (MS) time.
View Article and Find Full Text PDFThe use of proteomics bioinformatics substantially contributes to an improved understanding of proteomes, but this novel and in-depth knowledge comes at the cost of increased computational complexity. Parallelization across multiple computers, a strategy termed distributed computing, can be used to handle this increased complexity; however, setting up and maintaining a distributed computing infrastructure requires resources and skills that are not readily available to most research groups. Here we propose a free and open-source framework named Pladipus that greatly facilitates the establishment of distributed computing networks for proteomics bioinformatics tools.
View Article and Find Full Text PDFWe present an MS(2) peak intensity prediction server that computes MS(2) charge 2+ and 3+ spectra from peptide sequences for the most common fragment ions. The server integrates the Unimod public domain post-translational modification database for modified peptides. The prediction model is an improvement of the previously published MS(2)PIP model for Orbitrap-LTQ CID spectra.
View Article and Find Full Text PDFThe iceLogo web server and SOAP service implement the previously published iceLogo algorithm. iceLogo builds on probability theory to visualize protein consensus sequences in a format resembling sequence logos. Peptide sequences are compared against a reference sequence set that can be tailored to the studied system and the used protocol.
View Article and Find Full Text PDFProteins are dynamic molecules; they undergo crucial conformational changes induced by post-translational modifications and by binding of cofactors or other molecules. The characterization of these conformational changes and their relation to protein function is a central goal of structural biology. Unfortunately, most conventional methods to obtain structural information do not provide information on protein dynamics.
View Article and Find Full Text PDFA growing number of proteogenomics and metaproteomics studies indicate potential limitations of the application of the "decoy" database paradigm used to separate correct peptide identifications from incorrect ones in traditional shotgun proteomics. We therefore propose a binary classifier called Nokoi that allows fast yet reliable decoy-free separation of correct from incorrect peptide-to-spectrum matches (PSMs). Nokoi was trained on a very large collection of heterogeneous data using ranks supplied by the Mascot search engine to label correct and incorrect PSMs.
View Article and Find Full Text PDFWe here present The Online Protein Processing Resource (TOPPR; http://iomics.ugent.be/toppr/), an online database that contains thousands of published proteolytically processed sites in human and mouse proteins.
View Article and Find Full Text PDF