Cannabis sativa L., known for its medicinal and psychoactive properties, has recently experienced rapid market expansion but remains understudied in terms of its fundamental biology due to historical prohibitions. This pioneering study implements GS and ML to optimize cannabinoid profiles in cannabis breeding.
View Article and Find Full Text PDFLittle is known regarding the genes, compounds and physiological alternations that take place upon infection of black knot disease. This research aimed to unravel the genetic mechanism responsible for the resistance of Japanese plum ( L.) trees against black knot ( Schwein.
View Article and Find Full Text PDFNew selection methods, using trait-specific markers (marker-assisted selection (MAS)) and/or genome-wide markers (genomic selection (GS)), are becoming increasingly widespread in breeding programs. This new era requires innovative and cost-efficient solutions for genotyping. Reduction in sequencing cost has enhanced the use of high-throughput low-cost genotyping methods such as genotyping-by-sequencing (GBS) for genome-wide single-nucleotide polymorphism (SNP) profiling in large breeding populations.
View Article and Find Full Text PDFAdvancements in micropropagation techniques have made it easier to produce large numbers of cannabis clones, but these methods may also introduce genetic instability over successive generations. This instability often manifests as somaclonal variation, characterized by the progressive accumulation of genetic mutations or epigenetic alterations with each subculture. In this study, we examined how mutations accumulate in cannabis clones subjected to 6-11 subcultures.
View Article and Find Full Text PDFThe primary focus of medicinal cannabis research is to ensure the stability of cannabis lines for consistent administration of chemically uniform products to patients. In recent years, tissue culture has emerged as a valuable technique for genetic preservation and rapid multiplication of cannabis clones. However, there is concern that the physical and chemical conditions of the growing media can induce somaclonal variation, potentially impacting the viability and uniformity of clones.
View Article and Find Full Text PDFCannabis sativa L., previously concealed by prohibition, is now a versatile and promising plant, thanks to recent legalization, opening doors for medical research and industry growth. However, years of prohibition have left the Cannabis research community lagging behind in understanding Cannabis genetics and trait inheritance compared to other major crops.
View Article and Find Full Text PDFBackground: Cannabis is a historically, culturally, and economically significant crop in human societies, owing to its versatile applications in both industry and medicine. Over many years, native cannabis populations have acclimated to the various environments found throughout Iran, resulting in rich genetic and phenotypic diversity. Examining phenotypic diversity within and between indigenous populations is crucial for effective plant breeding programs.
View Article and Find Full Text PDFPresented here are model Yang cycle, ethylene biosynthesis and signaling pathways in Cannabis sativa. C. sativa floral transcriptomes were used to predict putative ethylene-related genes involved in sexual plasticity in the species.
View Article and Find Full Text PDFBackground: The accurate detection of variants is essential for genomics-based studies. Currently, there are various tools designed to detect genomic variants, however, it has always been a challenge to decide which tool to use, especially when various major genome projects have chosen to use different tools. Thus far, most of the existing tools were mainly developed to work on short-read data (i.
View Article and Find Full Text PDFSoybean cyst nematode (SCN, , Ichinohe) poses a significant threat to global soybean production, necessitating a comprehensive understanding of soybean plants' response to SCN to ensure effective management practices. In this study, we conducted dual RNA-seq analysis on SCN-resistant Plant Introduction (PI) 437654, 548402, and 88788 as well as a susceptible line (Lee 74) under exposure to SCN HG type 1.2.
View Article and Find Full Text PDF( L.) stands as a historically significant and culturally important plant, embodying economic, social, and medicinal relevance for human societies. However, years of prohibition and stigmatization have hindered the cannabis research community, which is hugely undersized and suffers from a scarcity of understanding of cannabis genetics and how key traits are expressed or inherited.
View Article and Find Full Text PDFDifferential gene expression profiles of various cannabis calli including non-embryogenic and embryogenic (i.e., rooty and embryonic callus) were examined in this study to enhance our understanding of callus development in cannabis and facilitate the development of improved strategies for plant regeneration and biotechnological applications in this economically valuable crop.
View Article and Find Full Text PDFand -mediated hairy root transformation (HRT) assays are key components of the plant biotechnology and functional genomics toolkit. In this report, both and HRT were optimized in soybean using the reporter. Different parameters including strain, optical density of the bacterial cell culture (OD), co-cultivation media, soybean genotype, explant age, and acetosyringone addition and concentration were evaluated.
View Article and Find Full Text PDFFusarium head blight (FHB), caused by Fusarium graminearum, is one of the most destructive wheat diseases worldwide. FHB infection can dramatically reduce grain yield and quality due to mycotoxins contamination. Wheat resistance to FHB is quantitatively inherited and many low-effect quantitative trait loci (QTL) have been mapped in the wheat genome.
View Article and Find Full Text PDFIn the 18th century, Carolus Linnaeus created a formalized system of classification of living organisms based on their anatomic relationships, which we know as taxonomic nomenclature. Historically, the genus has been described three ways under this system: by C. Linnaeus in 1753, by J.
View Article and Find Full Text PDFSoybean fixes atmospheric nitrogen through the symbiotic rhizobia bacteria that inhabit root nodules. Drought stress negatively affect symbiotic nitrogen fixation (SNF) in soybean. The main objective of this study was to identify allelic variations associated with SNF in short-season Canadian soybean varieties under drought stress.
View Article and Find Full Text PDFDespite the increased efficiency of sequencing technologies and the development of reduced-representation sequencing (RRS) approaches allowing high-throughput sequencing (HTS) of multiplexed samples, the per-sample genotyping cost remains the most limiting factor in the context of large-scale studies. For example, in the context of genomic selection (GS), breeders need genome-wide markers to predict the breeding value of large cohorts of progenies, requiring the genotyping of thousands candidates. Here, we introduce 3D-GBS, an optimized GBS procedure, to provide an ultra-high-throughput and ultra-low-cost genotyping solution for species with small to medium-sized genome and illustrate its use in soybean.
View Article and Find Full Text PDFStatistical models are at the core of the genome-wide association study (GWAS). In this chapter, we provide an overview of single- and multilocus statistical models, Bayesian, and machine learning approaches for association studies in plants. These models are discussed based on their basic methodology, cofactors adjustment accounted for, statistical power and computational efficiency.
View Article and Find Full Text PDFMethods Mol Biol
June 2022
In this introductory chapter, we seek to provide the reader with a high-level overview of what goes into designing a genome-wide association study (GWAS) in the context of crop plants. After introducing some general concepts regarding GWAS, we divide the contents of this overview into four main sections that reflect the key components of a GWAS: assembly and phenotyping of an association panel, genotyping, association analysis and candidate gene identification. These sections largely reflect the structure of the chapters which follow later in the book, and which provide detailed discussions of these various steps.
View Article and Find Full Text PDFA genome-wide association study (GWAS) is currently one of the most recommended approaches for discovering marker-trait associations (MTAs) for complex traits in plant species. Insufficient statistical power is a limiting factor, especially in narrow genetic basis species, that conventional GWAS methods are suffering from. Using sophisticated mathematical methods such as machine learning (ML) algorithms may address this issue and advance the implication of this valuable genetic method in applied plant-breeding programs.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
May 2022
Sequencing technologies are evolving at a rapid pace, enabling the generation of massive amounts of data in multiple dimensions (e.g., genomics, epigenomics, transcriptomic, metabolomics, proteomics, and single-cell omics) in plants.
View Article and Find Full Text PDF