Glycogen synthase kinase-3 (GSK-3) plays a key role in several biochemical pathways and is an attractive target for pharmacological intervention. We prepared a series of analogs of a highly selective thiazolidinethione inhibitor of GSK-3. The structure-activity relationship indicated a precise structural requirement for potent inhibition.
View Article and Find Full Text PDFSmall modifications in the chemical structure of ligands are known to dramatically change their ability to inhibit the activity of a protein. Unraveling the mechanisms that govern these dramatic changes requires scrutinizing the dynamics of protein-ligand binding and unbinding at the atomic level. As an exemplary case, we have studied Glycogen Synthase Kinase-3β (GSK-3β), a multifunctional kinase that has been implicated in a host of pathological processes.
View Article and Find Full Text PDFDuring a SARS-CoV-2 infection, macrophages recognize viral components resulting in cytokine production. While this response fuels virus elimination, overexpression of cytokines can lead to severe COVID-19. Previous studies suggest that the spike protein (S) of SARS-CoV-2 can elicit cytokine production via the transcription factor NF-κB and the toll-like receptors (TLRs).
View Article and Find Full Text PDFA key component of severe COVID-19 is a "cytokine storm" i.e., the excessive expression of unneeded cytokines.
View Article and Find Full Text PDFGlycogen synthase kinase-3 (GSK-3) has been implicated in numerous pathologies making GSK-3 an attractive therapeutic target. Our group has identified a compound termed COB-187 that is a potent and selective inhibitor of GSK-3. In this study, we probed the mechanism by which COB-187 inhibits GSK-3β.
View Article and Find Full Text PDFThe role of interferon-gamma (IFN-γ) in Chronic Myelogenous/Myeloid Leukemia (CML) and in the treatment of CML remains unclear; specifically, the effect of IFN-γ on apoptosis. There is reported interplay between IFN-γ and glycogen synthase kinase-3 (GSK-3), a kinase which has been implicated in both cell death and, conversely, cell survival. Thus, we utilized the CML-derived HAP1 cell line and a mutant HAP1 GSK-3β knocked-down cell line (GSK-3β 31bp) to investigate whether GSK-3 modulates IFN-γ's action on CML cells.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
December 2019
Glycogen synthase kinase-3 (GSK-3) is a multitasking protein kinase that regulates numerous critical cellular functions. Not surprisingly, elevated GSK-3 activity has been implicated in a host of diseases including pathological inflammation, diabetes, cancer, arthritis, asthma, bipolar disorder, and Alzheimer's. Therefore, reagents that inhibit GSK-3 activity provide a means to investigate the role of GSK-3 in cellular physiology and pathophysiology and could become valuable therapeutics.
View Article and Find Full Text PDF