The disturbance of microbiota composition in the female reproductive tract (FRT) can result in several reproductive disorders. Spermatozoa express toll like receptors (TLRs) and may encounter many types of microbiota in the FRT, however no study has been performed regarding the interaction between spermatozoa TLRs and FRT microbiota in unexplained recurrent spontaneous abortion (URSA) and fertile couples. In this study, we investigate the interaction of vaginal lactobacillus casei probiotic as a representative of FRT microbiota with TLR2 and 4 on spermatozoa.
View Article and Find Full Text PDFBackground: Impaired spermatozoa immunogenicity can result in pregnancy complications such as recurrent spontaneous abortion (RSA). Given that spermatozoa contact with microbiota, it is possible that inappropriate microbiota composition in the reproductive tract could result in the alteration of spermatozoa antigenicity. Probiotics, as a representative of microbiota, may therefore have a beneficial effect on this altered immunogenicity.
View Article and Find Full Text PDFBone marrow mesenchymal stromal cells (MSCs) play a crucial role in the regulation of hematopoiesis. These cells affect the process through direct cell-cell contact, as well as releasing various trophic factors and extracellular vehicles (EVs) into the bone marrow microenvironment. MSC-derived EVs (MSC-EVs) are prominent intercellular communication tolls enriched with broad-spectrum bioactive factors such as proteins, cytokines, lipids, miRNAs, and siRNAs.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) release hematopoietic cytokines, growth factors, and Microvesicles (MVs) supporting the hematopoietic stem cells (HSCs). MVs released from various cells, playing a crucial role in biological functions of their parental cells. MSC-derived MVs contain microRNAs and proteins with key roles in the regulation of hematopoiesis.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) play an important role in the proliferation and differentiation of hematopoietic stem cells (HSCs) in the bone marrow via cell-to-cell contact, as well as secretion of cytokines and microvesicles (MVs). In this study, we investigated the effect of mesenchymal stem cell-derived microvesicles (MSC-MVs) on erythroid differentiation of umbilical cord blood-derived CD34 cells. In this descriptive study, CD34 cells were cultured with mixture of SCF (10 ng/ml) and rhEPO (5 U/ml) cytokines in complete IMDM medium as positive control group.
View Article and Find Full Text PDFHematopoietic stem cells (HSCs) are multipotent stem cells, with self-renewal ability as well as ability to generate all blood cells. Mesenchymal stem cells (MSCs) are multipotent stem cells, with self-renewal ability, and capable of differentiating into a variety of cell types. MSCs have supporting effects on hematopoiesis; through direct intercellular communications as well as secreting cytokines, chemokines, and extracellular vesicles (EVs).
View Article and Find Full Text PDFHematopoiesis is a balance among quiescence, self-renewal, proliferation, and differentiation, which is believed to be firmly adjusted through interactions between hematopoietic stem and progenitor cells (HSPCs) with the microenvironment. This microenvironment is derived from a common progenitor of mesenchymal origin and its signals should be capable of regulating the cellular memory of transcriptional situation and lead to an exchange of stem cell genes expression. Mesenchymal stem cells (MSCs) have self-renewal and differentiation capacity into tissues of mesodermal origin, and these cells can support hematopoiesis through release various molecules that play a crucial role in migration, homing, self-renewal, proliferation, and differentiation of HSPCs.
View Article and Find Full Text PDFMesenchymal stromal/stem cells (MSCs) are involved in tissue homeostasis through direct cell-to-cell interaction, as well as secretion of soluble factors. Exosomes are the sort of soluble biological mediators that obtained from MSCs cultured media in vitro. MSC-derived exosomes (MSC-DEs) which produced under physiological or pathological conditions are central mediators of intercellular communications by conveying proteins, lipids, mRNAs, siRNA, ribosomal RNAs and miRNAs to the neighbor or distant cells.
View Article and Find Full Text PDF