J Phys Chem B
December 2024
The material properties of biomolecular condensates govern their dynamics and functions by influencing the molecular diffusion rates and biochemical interactions. A recent report has identified a characteristic timescale of temperature-dependent viscosity in biomolecular condensates arising from an activated dissociation events collectively referred to as flow activation energy. The microscopic origin of this activation energy is a complex function of sequence, stoichiometry, and external conditions.
View Article and Find Full Text PDFLiquid-liquid phase separation of proteins and nucleic acids into condensate phases is a versatile mechanism for ensuring the compartmentalization of cellular biochemistry. RNA molecules play critical roles in these condensates, particularly in transcriptional regulation and stress responses, exhibiting a wide range of thermodynamic and dynamic behaviors. However, deciphering the molecular grammar that governs the stability and dynamics of protein-RNA condensates remains challenging due to the multicomponent and heterogeneous nature of condensates.
View Article and Find Full Text PDFLiquid-liquid phase separation of proteins and nucleic acids into condensate phases is a versatile mechanism for ensuring compartmentalization of cellular biochemistry. RNA molecules play critical roles in these condensates, particularly in transcriptional regulation and stress responses, exhibiting a wide range of thermodynamic and dynamic behaviors. However, deciphering the molecular grammar that governs the stability and dynamics of protein-RNA condensates remains challenging due to the multicomponent and heterogeneous nature of these biomolecular mixtures.
View Article and Find Full Text PDFA significant fraction of eukaryotic proteins contain low-complexity sequence elements with unknown functions. Many of these sequences are prone to form biomolecular condensates with unique material and dynamic properties. Mutations in low-complexity regions often result in abnormal phase transitions into pathological solid-like states.
View Article and Find Full Text PDFJ Chem Theory Comput
October 2024
Decoding allostery at the atomic level is essential for understanding the relationship between a protein's sequence, structure, and dynamics. Recently, we have shown that decomposing temperature responses of inter-residue contacts can reveal allosteric couplings and provide useful insight into the functional dynamics of proteins. The details of this Chemically Accurate Contact Response Analysis (ChACRA) are presented here along with its application to two well-known allosteric proteins.
View Article and Find Full Text PDFThe functional properties of RNA binding proteins (RBPs) require allosteric regulation through interdomain communication. Despite the importance of allostery to biological regulation, only a few studies have been conducted to describe the biophysical nature by which interdomain communication manifests in RBPs. Here, we show for hnRNP A1 that interdomain communication is vital for the unique stability of its amino-terminal domain, which consists of two RNA recognition motifs (RRMs).
View Article and Find Full Text PDFThe phase separation of protein and RNA mixtures underpins the assembly and regulation of numerous membraneless organelles in cells. The ubiquity of protein-RNA condensates in cellular regulatory processes is in part due to their sensitivity to RNA concentration, which affects their physical properties and stability. Recent experiments with poly-cationic peptide-RNA mixtures have revealed closed-loop phase diagrams featuring lower and upper critical solution temperatures.
View Article and Find Full Text PDFThe fat mass and obesity-associated fatso (FTO) protein is a member of the Alkb family of dioxygenases and catalyzes oxidative demethylation of N-methyladenosine (mA), N-methyladenosine (mA), 3-methylthymine (mT), and 3-methyluracil (mU) in single-stranded nucleic acids. It is well established that the catalytic activity of FTO proceeds via two coupled reactions. The first reaction involves decarboxylation of alpha-ketoglutarate (αKG) and formation of an oxyferryl species.
View Article and Find Full Text PDFRecent advances chromatin capture, imaging techniques, and polymer modeling have dramatically enhanced quantitative understanding of chromosomal folding. However, the dynamism inherent in genome architectures due to physical and biochemical forces and their impact on nuclear architecture and cellular functions remains elusive. While imaging of chromatin in four dimensions is becoming more common, there is a conspicuous lack of physics-based computational tools appropriate for revealing the forces that shape nuclear architecture and dynamics.
View Article and Find Full Text PDFConformational dynamics of RNA plays important roles in a variety of cellular functions such as transcriptional regulation, catalysis, scaffolding, and sensing. Recently, RNAs with low-complexity sequences have been shown to phase separate and form condensate phases similar to lowcomplexity protein domains. The affinity for phase separation and the material characteristics of RNA condensates are strongly dependent on sequence composition and patterning.
View Article and Find Full Text PDFThe form and function of biomolecular condensates are intimately linked to their material properties. Here, we integrate microrheology with molecular simulations to dissect the physical determinants of condensate fluid phase dynamics. By quantifying the timescales and energetics of network relaxation in a series of heterotypic viscoelastic condensates, we uncover distinctive roles of sticker motifs, binding energy, and chain length in dictating condensate dynamical properties.
View Article and Find Full Text PDFTo survive, cells must respond to changing environmental conditions. One way that eukaryotic cells react to harsh stimuli is by forming physiological, RNA-seeded subnuclear condensates, termed amyloid bodies (A-bodies). The molecular constituents of A-bodies induced by different stressors vary significantly, suggesting this pathway can tailor the cellular response by selectively aggregating a subset of proteins under a given condition.
View Article and Find Full Text PDFPhase separation of biomolecules underlies the formation and regulation of various membraneless condensates in cells. How condensates function reliably while surrounded by heterogeneous and dynamic mixtures of biomolecular components with specific and nonspecific interactions is yet to be understood. Studying multicomponent biomolecular mixtures with designer peptides has recently become an attractive avenue for learning about physicochemical principles governing cellular condensates.
View Article and Find Full Text PDFTRPV Ion channels are sophisticated molecular sensors designed to respond to distinct temperature thresholds. The recent surge in cryo-EM structures has provided numerous insights into the structural rearrangements accompanying their opening and closing; however, the molecular mechanisms by which TRPV channels establish precise and robust temperature sensing remain elusive. In this work we employ molecular simulations, multi-ensemble contact analysis, graph theory, and machine learning techniques to reveal the temperature-sensitive residue-residue interactions driving allostery in TRPV3.
View Article and Find Full Text PDFThe functional properties of RNA-binding proteins (RBPs) require allosteric regulation through inter-domain communication. Despite the foundational importance of allostery to biological regulation, almost no studies have been conducted to describe the biophysical nature by which inter-domain communication manifests in RBPs. Here, we show through high-pressure studies with hnRNP A1 that inter-domain communication is vital for the unique stability of its N- terminal domain containing a tandem of RNA Recognition Motifs (RRMs).
View Article and Find Full Text PDFThe liquid-liquid phase separation of protein and nucleic acid mixtures drives the formation of numerous membraneless compartments in cells. Temperature variation is commonly used for mapping condensate phase diagrams, which often display unique upper critical temperatures. Recent report on peptide-RNA mixtures has shown the existence of lower and upper critical solution temperatures, highlighting the importance of temperature-dependent solvent and ion-mediated forces.
View Article and Find Full Text PDFLarge-scale interdomain rearrangements are essential to protein function, governing the activity of large enzymes and molecular machineries. Yet, obtaining an atomic-resolution understanding of how the relative domain positioning is affected by external stimuli is a hard task in modern structural biology. Here, we show that combining structural modeling by AlphaFold2 with coarse-grained molecular dynamics simulations and NMR residual dipolar coupling data is sufficient to characterize the spatial domain organization of bacterial enzyme I (EI), a ∼130 kDa multidomain oligomeric protein that undergoes large-scale conformational changes during its catalytic cycle.
View Article and Find Full Text PDFTRPV Ion channels are sophisticated molecular sensors designed to respond to distinct temperature thresholds. The recent surge in cryo-EM structures has provided numerous insights into the structural rearrangements accompanying their opening and closing; however, the molecular mechanisms by which TRPV channels establish precise and robust temperature sensing remain elusive. In this work we employ molecular simulations, multi-ensemble contact analysis, graph theory, and machine learning techniques to reveal the temperature-sensitive residue-residue interactions driving allostery in TRPV3.
View Article and Find Full Text PDFSubstrate selectivity is an important preventive measure to decrease the possibility of cross interactions between enzymes and metabolites that share structural similarities. In addition, understanding the mechanisms that determine selectivity towards a particular substrate increases the knowledge base for designing specific inhibitors for target enzymes. Here, we combine NMR, molecular dynamics (MD) simulations, and protein engineering to investigate how two substrate analogues, allylicphosphonate (cPEP) and sulfoenolpyruvate (SEP), recognize the mesophilic (eEIC) and thermophilic (tEIC) homologues of the receptor domain of bacterial Enzyme I, which has been proposed as a target for antimicrobial research.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2022
Homologous enzymes with identical folds often exhibit different thermal and kinetic behaviors. Understanding how an enzyme sequence encodes catalytic activity at functionally optimal temperatures is a fundamental problem in biophysics. Recently it was shown that the residues that tune catalytic activities of thermophilic/mesophilic variants of the C-terminal domain of bacterial enzyme I (EIC) are largely localized within disordered loops, offering a model system with which to investigate this phenomenon.
View Article and Find Full Text PDFMethods Mol Biol
October 2022
A vast number of intracellular membraneless bodies also known as biomolecular condensates form through a liquid-liquid phase separation (LLPS) of biomolecules. To date, phase separation has been identified as the main driving force for a membraneless organelles such as nucleoli, Cajal bodies, stress granules, and chromatin compartments. Recently, the protein-RNA condensation is receiving increased attention, because it is closely related to the biological function of cells such as transcription, translation, and RNA metabolism.
View Article and Find Full Text PDFThe liquid-liquid phase separation (LLPS) of biomolecules is a phenomenon which is nowadays recognized as the driving force for the biogenesis of numerous functional membraneless organelles and cellular bodies. The interplay between the protein primary sequence and phase separation remains poorly understood, despite intensive research. To uncover the sequence-encoded signals of protein capable of undergoing LLPS, we developed a novel web platform named BIAPSS (Bioinformatics Analysis of LLPS Sequences).
View Article and Find Full Text PDFProteomic studies have shown that cellular condensates are frequently enriched in diverse RNA molecules, which is suggestive of mechanistic links between phase separation and transcriptional activities. Here, we report a systematic experimental and computational study of thermodynamic landscapes and interfacial properties of protein-RNA condensates. We have studied the affinity of protein-RNA condensation as a function of variable RNA sequence length and RNA-protein stoichiometry under different ionic environments and external crowding.
View Article and Find Full Text PDF