In this study, we examined modulations in phosphatase and tensin homolog (PTEN) and mammalian target of rapamycin (mTOR) protein expression after a lateral C2 hemisection and subsequent intermittent hypoxia (IH) exposure and training, which initiates respiratory motor plasticity and recovery. PTEN and mTOR are significant molecules within a signaling pathway that directly influences dendritic sprouting, axonal plasticity, and regeneration. Expression levels of PTEN, mTOR and downstream effectors within this pathway were investigated, and it was found that following injury and IH exposure the expression of these molecules was significantly altered.
View Article and Find Full Text PDFG protein-coupled receptors are involved in the modulation of complex neuronal networks in the brain. To investigate the impact of a cell-specific G(i/o) protein-mediated signaling pathway on brain function, we created a new optogenetic mouse model in which the G(i/o) protein-coupled receptor vertebrate rhodopsin can be cell-specifically expressed with the aid of Cre recombinase. Here we use this mouse model to study the functional impact of G(i/o) modulation in cerebellar Purkinje cells (PCs).
View Article and Find Full Text PDFTechniques for fast noninvasive control of neuronal excitability will be of major importance for analyzing and understanding neuronal networks and animal behavior. To develop these tools we demonstrated that two light-activated signaling proteins, vertebrate rat rhodopsin 4 (RO4) and the green algae channelrhodospin 2 (ChR2), could be used to control neuronal excitability and modulate synaptic transmission. Vertebrate rhodopsin couples to the Gi/o, pertussis toxin-sensitive pathway to allow modulation of G protein-gated inward rectifying potassium channels and voltage-gated Ca2+ channels.
View Article and Find Full Text PDFResumption of meiosis in oocytes of Xenopus tropicalis required translation but not transcription, and was marked by the appearance of a white spot and a dark ring, coincident with entry into metaphase I and the onset of anaphase I, respectively. Cyclin B(2)/p34(cdc2) activity increased prior to the first meiotic division, declined at the onset of anaphase I, and subsequently increased again. The capacity of egg cytoplasm to induce germinal vesicle breakdown (GVBD) was inhibited by cycloheximide, despite the fact that these oocytes contained cyclin B(2)/p34(cdc2) complexes.
View Article and Find Full Text PDF