Publications by authors named "Davin Malasarn"

Zinc is an essential nutrient because of its role in catalysis and in protein stabilization, but excess zinc is deleterious. We distinguished four nutritional zinc states in the alga Chlamydomonas reinhardtii: toxic, replete, deficient, and limited. Growth is inhibited in zinc-limited and zinc-toxic cells relative to zinc-replete cells, whereas zinc deficiency is visually asymptomatic but distinguished by the accumulation of transcripts encoding ZIP family transporters.

View Article and Find Full Text PDF

Trace metals such as copper, iron, zinc, and manganese play important roles in several biochemical processes, including respiration and photosynthesis. Using a label-free, quantitative proteomics strategy (MS(E)), we examined the effect of deficiencies in these micronutrients on the soluble proteome of Chlamydomonas reinhardtii. We quantified >10(3) proteins with abundances within a dynamic range of 3 to 4 orders of magnitude and demonstrated statistically significant changes in ~200 proteins in each metal-deficient growth condition relative to nutrient-replete media.

View Article and Find Full Text PDF

UC CEIN was established with funding from the US National Science Foundation and the US Environmental Protection Agency in 2008 with the mission to study the impact of nanotechnology on the environment, including the identification of hazard and exposure scenarios that take into consideration the unique physicochemical properties of engineered nanomaterials (ENMs). Since its inception, the Center has made great progress in assembling a multidisciplinary team to develop the scientific underpinnings, research, knowledge acquisition, education and outreach that is required for assessing the safe implementation of nanotechnology in the environment. In this essay, the development of the infrastructure, protocols, and decision-making tools that are required to effectively integrate complementary scientific disciplines allowing knowledge gathering in a complex study area that goes beyond the traditional safety and risk assessment protocols of the 20th century is outlined.

View Article and Find Full Text PDF

Interest in exploiting algae as a biofuel source and the role of inorganic nutrient deficiency in inducing triacylglyceride (TAG) accumulation in cells necessitates a strategy to efficiently formulate species-specific culture media that can easily be manipulated. Using the reference organism Chlamydomonas reinhardtii, we tested the hypothesis that modeling trace element supplements after the cellular ionome would result in optimized cell growth. We determined the trace metal content of several commonly used Chlamydomonas strains in various culture conditions and developed a revised trace element solution to parallel these measurements.

View Article and Find Full Text PDF

Copper response regulator 1 (CRR1), an SBP-domain transcription factor, is a global regulator of nutritional copper signaling in Chlamydomonas reinhardtii and activates genes necessary during periods of copper deficiency. We localized Chlamydomonas CRR1 to the nucleus in mustard (Sinapis alba) seedlings, a location consistent with its function as a transcription factor. The Zn binding SBP domain of CRR1 binds copper ions in vitro.

View Article and Find Full Text PDF

Background: COG0523 proteins are, like the nickel chaperones of the UreG family, part of the G3E family of GTPases linking them to metallocenter biosynthesis. Even though the first COG0523-encoding gene, cobW, was identified almost 20 years ago, little is known concerning the function of other members belonging to this ubiquitous family.

Results: Based on a combination of comparative genomics, literature and phylogenetic analyses and experimental validations, the COG0523 family can be separated into at least fifteen subgroups.

View Article and Find Full Text PDF

Microbial arsenate respiration contributes to the mobilization of arsenic from the solid to the soluble phase in various locales worldwide. To begin to predict the extent to which As(V) respiration impacts arsenic geochemical cycling, we characterized the expression and activity of the Shewanella sp. strain ANA-3 arsenate respiratory reductase (ARR), the key enzyme involved in this metabolism.

View Article and Find Full Text PDF

Bacterial reduction of arsenic(V) and iron(III) oxides influences the redox cycling and partitioning of arsenic (As) between solid and aqueous phases in sediment-porewater systems. Two types of anaerobic bacterial incubations were designed to probe the relative order of As(V) and Fe(III) oxide reduction and to measure the effect of adsorbed As species on the rate of iron reduction, using hydrous ferric oxide (HFO) as the iron substrate. In one set of experiments, HFO was pre-equilibrated with As(V) and inoculated with fresh sediment from Haiwee Reservoir (Olancha, CA), an As-impacted field site.

View Article and Find Full Text PDF

Bacteria are remarkable in their metabolic diversity due to their ability to harvest energy from myriad oxidation and reduction reactions. In some cases, their metabolisms involve redox transformations of metal(loid)s, which lead to the precipitation, transformation, or dissolution of minerals. Microorganism/mineral interactions not only affect the geochemistry of modern environments, but may also have contributed to shaping the near-surface environment of the early Earth.

View Article and Find Full Text PDF