Publications by authors named "Davin Chernak"

Deep learning has revolutionized many scene perception tasks over the past decade. Some of these improvements can be attributed to the development of large labeled datasets. The creation of such datasets can be an expensive, time-consuming, and imperfect process.

View Article and Find Full Text PDF

Cell behavior in the presence of nanomaterials is typically explored through simple viability assays, but there is mounting evidence that nanomaterials can have more subtle effects on a variety of cellular functions. Previously our lab demonstrated that gold nanorods functionalized with polyelectrolyte multi-layers inhibited rat cardiac fibroblast-mediated remodeling of type I collagen scaffolds by altering fibroblast phenotype and the mechanical properties of the collagen network. In this work, we examine a possible mechanism for these effects: adsorption of cellular proteins by the nanorods.

View Article and Find Full Text PDF

Gold nanoparticles are receiving considerable attention due to their novel properties and the potential variety of their uses. Long gold nanorods with dimensions of approximately 20 × 400 nm exhibit strong light scattering and can be easily observed under dark-field microscopy. Here we describe the use of this light-scattering property to track micrometer scale strains in collagen gels and thick films, which result from cell traction forces applied by neonatal heart fibroblasts.

View Article and Find Full Text PDF

The basic characteristics of nanowire growth driven by screw dislocations were investigated by synthesizing hierarchical lead sulfide (PbS) nanowire "pine trees" using chemical vapor deposition of PbCl(2) and S precursors and systematically observing the effects of various growth parameters, such as hydrogen flow, temperature, pressure, and the growth substrates employed. Statistical surveys showed that the growth rate of the dislocation-driven trunk is about 6 mum/min and that of the vapor-liquid-solid (VLS) driven branch nanowire is about 1.2 mum/min under the typical reaction conditions at 600 degrees C, 900 Torr, and a hydrogen flow rate of 1.

View Article and Find Full Text PDF