Publications by authors named "Davide Vodola"

In this work, we test a recently developed method to enhance classical auxiliary-field quantum Monte Carlo (AFQMC) calculations with quantum computers against examples from chemistry and material science, representative of classes of industry-relevant systems. As molecular test cases, we calculate the energy curve of H4 and the relative energies of ozone and singlet molecular oxygen with respect to triplet molecular oxygen, which is industrially relevant in organic oxidation reactions. We find that trial wave functions beyond single Slater determinants improve the performance of AFQMC and allow it to generate energies close to chemical accuracy compared to full configuration interaction or experimental results.

View Article and Find Full Text PDF

The successful operation of quantum computers relies on protecting qubits from decoherence and noise, which-if uncorrected-will lead to erroneous results. Because these errors accumulate during an algorithm, correcting them is a key requirement for large-scale and fault-tolerant quantum information processors. Besides computational errors, which can be addressed by quantum error correction, the carrier of the information can also be completely lost or the information can leak out of the computational space.

View Article and Find Full Text PDF

In this Letter, we establish and explore a new connection between quantum information theory and classical statistical mechanics by studying the problem of qubit losses in 2D topological color codes. We introduce a protocol to cope with qubit losses, which is based on the identification and removal of a twin qubit from the code, and which guarantees the recovery of a valid three-colorable and trivalent reconstructed color code. Moreover, we show that determining the corresponding qubit loss error threshold is equivalent to a new generalized classical percolation problem.

View Article and Find Full Text PDF

We propose and analyze a generalization of the Kitaev chain for fermions with long-range p-wave pairing, which decays with distance as a power law with exponent α. Using the integrability of the model, we demonstrate the existence of two types of gapped regimes, where correlation functions decay exponentially at short range and algebraically at long range (α > 1) or purely algebraically (α < 1). Most interestingly, along the critical lines, long-range pairing is found to break conformal symmetry for sufficiently small α.

View Article and Find Full Text PDF