Publications by authors named "Davide Revignas"

The elastic behavior of nematics is commonly described in terms of the three so-called bulk deformation modes, i.e., splay, twist, and bend.

View Article and Find Full Text PDF

Since Onsager's seminal work, hard rods have been taken as a prototype of nematic liquid crystals, characterized by uniaxial order and a uniform director field as a ground state. Here, using Onsager theory to calculate the free energy in the presence of arbitrary deformations, we find that hard rod nematics have an intrinsic tendency to twist around their ordering axis (double twist), driven by a mechanism in which the orientational fluctuations of particles play a key role. The anisotropic hard core potential used here is arguably the simplest form of interaction able to originate spontaneous breaking of mirror symmetry in a 3D fluid.

View Article and Find Full Text PDF

Recent findings on various classes of nematics, whose microscopic structure differs from the prototypical rod-like shape, evidence unusual elastic properties, which challenge existing theories. Here we develop a theoretical and numerical methodology for the calculation of Frank elastic constants, accounting for the coupling between the molecular shape and each specific deformation mode. This is done in the framework of Onsager-Straley's second-virial theory, using a non-local form of the orientational distribution function.

View Article and Find Full Text PDF

The existing microscopic theories for elasticity of nematics are challenged by recent findings on systems, whether bent molecules or semiflexible polymers, which do not comply with the model of rigid rodlike particles. Here, we propose an extension of Onsager-Straley second-virial theory, based on a model for the orientational distribution function that, through explicit account of the director profile along a particle, changes in the presence of deformations. The elastic constants reveal specific effects of particle morphology, which are not captured by the existing theories.

View Article and Find Full Text PDF