Rev Physiol Biochem Pharmacol
January 2023
Forty years ago, the introduction of a new electrophysiological technique, the patch clamp, revolutionized the fields of Cellular Physiology and Biophysics, providing for the first time the possibility of describing the behavior of a single protein, an ion-permeable channel of the cell plasma membrane, in its physiological environment. The new approach was actually much more potent and versatile than initially envisaged, and it has evolved into several different modalities that have radically changed our knowledge of how cells (not only the classical "electrically excitable "ones, such as nerves and muscles) use electrical signaling to modulate and organize their activity. This review aims at telling the history of the background from which the new technique evolved and at analyzing some of its more recent developments.
View Article and Find Full Text PDFBisphenol A (BPA) is one of the most widely used chemicals worldwide, e.g., as a component of plastic containers for food and water.
View Article and Find Full Text PDFAim: To clarify the mechanisms of interaction between SiO nanoparticles (NPs) and the plasma membrane of GT1-7 neuroendocrine cells, with focus on the activation of calcium-permeable channels, responsible for the long lasting calcium influx and modulation of the electrical activity in these cells.
Materials & Methods: Nontoxic doses of SiO NPs were administered to the cells. Calcium imaging and patch clamp techniques were combined with a pharmacological approach.
The repressor element-1 silencing transcription factor (REST) has emerged as a key controller of neuronal differentiation and has been shown to play a critical role in the expression of the neuronal phenotype; however, much has still to be learned about its role at specific developmental stages and about the functional targets affected. Among these targets, calcium signaling mechanisms are critically dependent on the developmental stage and their full expression is a hallmark of the mature, functional neuron. We have analyzed the role played by REST in GN11 cells, an immortalized cell line derived from gonadotropin hormone releasing hormone (GnRH) neurons at an early developmental stage, electrically non-excitable and with a strong migratory activity.
View Article and Find Full Text PDFSiO2 nanoparticles (NPs), in addition to their widespread utilization in consumer goods, are also being engineered for clinical use. They are considered to exert low toxicity both in vivo and in vitro, but the mechanisms involved in the cellular responses activated by these nanoobjects, even at non-toxic doses, have not been characterized in detail. This is of particular relevance for their interaction with the nervous system: silica NPs are good candidates for nanoneuromedicine applications.
View Article and Find Full Text PDFInt J Environ Res Public Health
September 2014
Nanosized objects are increasingly present in everyday life and in specialized technological applications. In recent years, as a consequence of concern about their potential adverse effects, intense research effort has led to a better understanding of the physicochemical properties that underlie their biocompatibility or potential toxicity, setting the basis for a rational approach to their use in the different fields of application. Among the functional parameters that can be perturbed by interaction between nanoparticles (NPs) and living structures, calcium homeostasis is one of the key players and has been actively investigated.
View Article and Find Full Text PDFCalcium signals play a major role in the control of all key stages of neuronal development, and in particular in the growth and orientation of neuritic processes. These signals are characterized by high spatial compartmentalization, a property which has a strong relevance in the different roles of specific neuronal regions in information coding. In this context it is therefore important to understand the structural and functional basis of this spatial compartmentalization, and in particular whether the behavior at each compartment is merely a consequence of its specific geometry or the result of the spatial segregation of specific calcium influx/efflux mechanisms.
View Article and Find Full Text PDFThe growth of neuritic processes in developing neurons is tightly controlled by a wide set of extracellular cues that act by initiating downstream signaling cascades, where calcium signals play a major role. Here we analyze the calcium dependence of the neurite growth promoted by basic fibroblast growth factor (bFGF or FGF-2) in chick embryonic ciliary ganglion neurons, taking advantage of dissociated, organotypic, and compartmentalized cultures. We report that signals at both the growth cone and the soma are involved in the promotion of neurite growth by the factor.
View Article and Find Full Text PDFCdSe Quantum Dots (QDs) are increasingly being employed in both industrial applications and biological imaging, thanks to their numerous advantages over conventional organic and proteic fluorescent markers. On the other hand a growing concern has emerged that toxic elements from the QDs core would render the nanoparticles harmful to cell cultures, animals and humans. The interaction between QDs and neuronal cells in particular needs to be carefully evaluated, since nanoparticles could access the nervous system by several pathways, including the olfactory epithelium, even if no data are presently available about QDs.
View Article and Find Full Text PDFBasic Fibroblast Growth Factor, or FGF-2, has been shown to promote neuronal survival and neurite outgrowth in dissociated neurons from the embryonic chick ciliary ganglion; in these effects the three main signal transduction pathways downstream the activated FGFR receptor, i.e. the MAPK, the PI3-K and the PLCγ ones, are differentially involved.
View Article and Find Full Text PDFBackground: A number of studies have separately shown that the neuregulin1 (NRG1)/ErbB4 system and NMDA-type glutamate receptors (NMDARs) are involved in several aspects of neuronal migration. In addition, intracellular calcium fluctuations play central roles in neuronal motility. Stable expression of the tyrosine kinase receptor ErbB4 promotes migratory activity in the neural progenitor cell line ST14A upon NRG1 stimulation.
View Article and Find Full Text PDFGonadotropin-releasing hormone (GnRH)-secreting neurons are key regulators of the reproductive behaviour in vertebrates. These neurons show a peculiar migratory pattern during embryonic development, and its perturbations have profound impact on fertility and other related functional aspects. Changes in the intracellular calcium concentration, [Ca(2+)](i), induced by different extracellular signals, play a central role in the control of neuronal migration, but the available knowledge regarding GnRH neurons is still limited.
View Article and Find Full Text PDFThe effects of Stöber silica nanoparticles on neuronal survival, proliferation, and on the underlying perturbations in calcium homeostasis are investigated on the well-differentiated neuronal cell line GT1-7. The responses to nanoparticles 50 and 200 nm in diameter are compared. The 50-nm silica affects neuronal survival/proliferation in a dose-dependent way, by stimulating apoptotic processes.
View Article and Find Full Text PDFBasic fibroblast growth factor (bFGF) exerts multiple neurotrophic actions on cultured neurons from the ciliary ganglion of chick embryo, among them promotion of neuronal survival and of neurite outgrowth. To understand the specificity of the signal transduction cascades involved in the control of these processes, we used pharmacological inhibitors of the three main effectors known to act downstream of the bFGF receptor (FGFR): phospholipase Cgamma (PLCgamma), mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3-kinase (PI3-K). Neuronal survival was assessed at 24 and 48 hr; neurite growth was analyzed both on dissociated neurons and on explants of whole ganglia.
View Article and Find Full Text PDFWe have developed a device for recording the extracellular electrical activity of cultured neuronal networks based on a hydrogen terminated (H-terminated) conductive diamond. GT1-7 cells, a neuronal cell line showing spontaneous action potentials firing, could maintain their functional properties for days in culture when plated on the H-terminated diamond surface. The recorded extracellular electrical activity appeared in the form of well-resolved bursts of fast and slow biphasic signals with a mean duration of about 8ms for the fast and 60ms for the slow events.
View Article and Find Full Text PDFCalcium-permeable cation channels of the transient receptor potential (TRP) superfamily are involved in agonist-induced calcium influx in several cell types. In this work we evaluated expression and localisation of classical TRP (TRPC) channels in two immortalised cell lines derived from the gonadotrophin releasing hormone (GnRH) neuroendocrine system, at different developmental stages: GT1-7 cells display many characteristics of mature hypothalamic GnRH neurons and are a suitable model to study neuritogenesis and neurosecretion, whereas GN11 cells retain a more immature phenotype with migratory activity. Immunoblotting analysis demonstrates that GN11 and GT1-7 cells differentially express several members of the TRPC family: TRPC1 and TRPC5 are expressed at high levels in GN11 cells, and TRPC4 is expressed at higher levels in GT1-7 cells.
View Article and Find Full Text PDFJ Recept Signal Transduct Res
September 2006
Transient Receptor Potential Canonical (TRPC) proteins have been identified in mammals as a family of plasma membrane calcium-permeable channels activated by different kinds of stimuli in several cell types. We have studied TRPC subunit expression in bovine aortic endothelial (BAE-1) cells, where stimulation with basic fibroblast growth factor (bFGF), a potent angiogenetic factor, induces calcium entry carried at least partially by TRPC1 channels. By means of a RT-PCR approach, we have found that, in addition to TRPC1, only TRPC4 is expressed, both at the mRNA and protein level, as confirmed by immunoblotting and immunocytochemical analysis.
View Article and Find Full Text PDFBasic fibroblast growth factor (bFGF) is a potent and multifunctional neurotrophic factor that can influence neuronal survival and differentiation. It has been shown to modulate growth and orientation of neuritic processes both in intact organs and in neuronal cultures, with a wide spectrum of effects on different preparations. Here we report that it promotes neurite growth in developing parasympathetic neurons from the chick ciliary ganglion.
View Article and Find Full Text PDFWe have studied calcium signals and their role in the migration of neuronal and nonneuronal cells of embryonic chick ciliary ganglion (CG). In vitro, neurons migrate in association with nonneuronal cells to form cellular aggregates. Changes in the modulus of the velocity of the neuron-nonneuronal cell complex were observed in response to treatments that increased or decreased intracellular calcium concentration.
View Article and Find Full Text PDFArachidonic acid (AA, 20:4) has been reported to modulate a variety of calcium-permeable ionic channels, both in the plasma membrane and in the endoplasmic reticulum. We have studied the effects of AA on calcium signaling in a well-characterized model of developing peripheral neurons, embryonic chick ciliary ganglion neurons in culture. When given at low non-micellar concentrations (5 microM), in the majority of cells AA directly activated a delayed and long-lasting increase in [Ca2+]i, involving both the cytoplasm and the nucleoplasm, that was completely reversed by abolition of extracellular calcium.
View Article and Find Full Text PDFSeveral peptides, including vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), activate the release of arachidonic acid (AA) and nitric oxide (NO) in endothelial cells (ECs). Both messengers are involved in EC proliferation and vascular permeability and control calcium homeostasis in different ways. Interestingly, it has been recently suggested that NO acts as a downstream mediator of AA-induced calcium entry in smooth muscle cells and isolated mouse parotid cells.
View Article and Find Full Text PDFCa(2+) signalling is involved in virtually all cellular processes: among the others, it controls cell survival, proliferation and death regulating a plethora of intracellular enzymes located in the cytoplasm, nucleus and organelles. Changes in the cytosolic free Ca(2+) concentration may be due either to release from the intracellular Ca(2+) stores or to influx from the extracellular medium, through the opening of plasma membrane calcium-permeable channels. In particular, Ca(2+) entry from the extracellular space is a mechanism able to sustain long lasting intracellular Ca(2+) elevations: this signal, activated by many growth factors and mitogens in normal and tumoral tissues, is linked to DNA transcription and duplication, finally leading to cell proliferation.
View Article and Find Full Text PDFWe have shown that the neurotrophic factors glial cell line-derived neurotrophic factor (GDNF) and basic fibroblast growth factor (bFGF) exert different effects on glial cells in cultures from chick embryo ciliary ganglia. bFGF acts as a mitogen on glial cells, and induces their aggregation to neuronal bodies; after 48 h of culture no glial cells could be observed along neurites. GDNF has no proliferative role; in contrast, it promotes the expression of the differentiative marker O4 and the association of glial cell bodies to neurites to form robust bundles.
View Article and Find Full Text PDFEmbryonic chick ciliary ganglion (CG) neurons obtained from E7-E8 ganglia maintained in serum-free medium were stimulated with 50 microM muscarine. A fast hyperpolarization of the membrane potential was observed in 25% of the cells tested, that in some cases was associated with a slower depolarization. Accordingly, in voltage clamp experiments, either an outward current or a biphasic current response could be observed.
View Article and Find Full Text PDFIn physiological conditions, endothelial cell proliferation is strictly controlled by several growth factors, among which bFGF and VEGF are the most effective. Both bind to specific tyrosine kinase receptors and trigger intracellular signal cascades. In particular, bFGF stimulates the release of arachidonic acid (AA) and its metabolites in many types of endothelial cells in culture.
View Article and Find Full Text PDF