Publications by authors named "Davide Graziani"

Negative allosteric modulators (NAMs) of the metabotropic glutamate receptor 5 (mGlu) hold great promise for the treatment of a variety of central nervous system disorders. We have recently reported that prop-2-ynylidenecycloalkylamine derivatives are potent and selective NAMs of the mGlu receptor. In this work, we explored the amide, carbamate, sulfonamide, and urea derivatives of prop-2-ynylidenecycloalkylamine compounds with the aim of improving solubility and metabolic stability.

View Article and Find Full Text PDF

Metabotropic glutamate receptor 5 (mGlu5) is a biological target implicated in major neurological and psychiatric disorders. In the present study, we have investigated structural determinants of the interaction of negative allosteric modulators (NAMs) with the seven-transmembrane (7TM) domain of mGlu5. A homology model of the 7TM receptor domain built on the crystal structure of the mGlu1 template was obtained, and the binding modes of known NAMs, namely MPEP and fenobam, were investigated by docking and molecular dynamics simulations.

View Article and Find Full Text PDF

The homology modeling of GPCRs has benefitted vastly from the availability of some resolved structures, which allow the generation of many reliable GPCR models. However, the dynamic behavior of such receptors has been only minimally examined in silico, although several pieces of evidence have highlighted some conformational switches that can orchestrate the activation mechanism. Among such switches, Pro-containing helices play a key role in determining bending in TM helices and thereby the width of the TM bundle.

View Article and Find Full Text PDF