The development of electronic skins and wearable devices is rapidly growing due to their broad application fields, such as for biomedical, health monitoring, or robotic purposes. In particular, tactile sensors based on piezoelectric polymers, which feature self-powering capability, have been widely used thanks to their flexibility and light weight. Among these, poly(vinylidenefluoride-trifluoroethylene) (PVDF-TrFE) presents enhanced piezoelectric properties, especially if manufactured in a nanofiber shape.
View Article and Find Full Text PDFThe radio-thermal ageing of silane-crosslinked polyethylene (Si-XLPE) was studied in air under different γ dose rates (6.0, 8.5, 77.
View Article and Find Full Text PDFPoly(3-hexylthiophene) (P3HT) is found to be a highly effective conductivity-reducing additive for low-density polyethylene (LDPE), which introduces a new application area to the field of conjugated polymers. Additives that reduce the direct-current (DC) electrical conductivity of an insulation material at high electric fields have gained a lot of research interest because they may facilitate the design of more efficient high-voltage direct-current power cables. An ultralow concentration of regio-regular P3HT of 0.
View Article and Find Full Text PDFThis paper deals with the study of a non-destructive technique to detect the aging state of cable insulation used in a nuclear environment subjected to radiation and temperature aging. Cable samples were aged under dose rates ranging from 0.42 and 1.
View Article and Find Full Text PDFProduction process was chosen in order to be readily scalable at the industrial level. The resin/graphene mixture was prepared through high shear mixing at six different weight concentrations between 0% and 10%. Samples were subsequently produced by compression molding.
View Article and Find Full Text PDFObjectives: The application of an electric field has been shown to positively influence the impregnation of the resin monomers currently used in dentin bonding systems during hybrid layer formation. This study presents an experimental characterization of the electrical properties of these monomers with the aim of both correlating them to their chemical structures and seeking an insight into the mechanisms of the monomer migration under an applied electric field.
Methods: Some common monomers examined were TEGDMA (triethyleneglycoldimethacrylate), HEMA (2-hydroxyethyl methacrylate), UDMA (urethane dimethacrylate), 2-MP (bis[2-(methacryloyloxy)ethyl] phosphate, TCDM di(hydroxyethyl methacrylate) ester of 5-(2,5-dioxotetrahydrofurfuryl)-3-methyl-3-cyclohexenyl-1,2-dicarboxylic anhydride) and Bis-GMA [2,2-bis(4-2-hydroxy-3-methacryloyloxypropoxyphenyl)propane].