Publications by authors named "Davide Duzzi"

Hierarchical models have been proposed to explain how the brain encodes actions, whereby different areas represent different features, such as gesture kinematics, target object, action goal, and meaning. The visual processing of action-related information is distributed over a well-known network of brain regions spanning separate anatomical areas, attuned to specific stimulus properties, and referred to as action observation network (AON). To determine the brain organization of these features, we measured representational geometries during the observation of a large set of transitive and intransitive gestures in two independent functional magnetic resonance imaging experiments.

View Article and Find Full Text PDF

Although economic decision-making is commonly characterized as a purely rational phenomenon, it is clear that real-world decision-making is influenced by emotions. Yet, relatively little is known about the neural correlates of this process. To explore this issue, 20 participants underwent fMRI scanning while engaged in the Prisoner's Dilemma game under partner-directed sympathy, anger and neutral emotion conditions.

View Article and Find Full Text PDF

This is the first study to examine functional brain activation in a single case of Highly Superior Autobiographical Memory (HSAM) who shows no sign of obsessive compulsive disorder (OCD). While previous work has documented the existence of HSAM, information about brain areas involved in this exceptional form of memory for personal events relies on structural and resting state connectivity data, with mixed results so far. In this first task-based functional magnetic resonance Imaging (fMRI) study of a normal individual with HSAM, dates were presented as cues and two phases were assessed during memory retrieval, initial access and later elaboration.

View Article and Find Full Text PDF

Mental effort is a common phenomenological construct deeply linked to volition and self-control. While it is often assumed that the amount of exertion invested in a task can be voluntarily regulated, the neural bases of such faculty and its behavioural effects are yet insufficiently understood. In this study, we investigated how the instructions to execute a demanding cognitive task either "with maximum exertion" or "as relaxed as possible" affected performance and brain activity.

View Article and Find Full Text PDF

There are cognitive domains which remain fully functional in a proportion of Alzheimer's disease (AD) patients. It is unknown, however, what distinctive mechanisms sustain such efficient processing. The concept of "cognitive efficiency" was investigated in these patients by operationalizing it as a function of the level of performance shown on the Letter Fluency test, on which, very often, patients in the early stages of AD show unimpaired performance.

View Article and Find Full Text PDF

A cognitive-stimulation tool was created to regulate functional connectivity within the brain Default-Mode Network (DMN). Computerized exercises were designed based on the hypothesis that repeated task-dependent coactivation of multiple DMN regions would translate into regulation of resting-state network connectivity. Forty seniors (mean age: 65.

View Article and Find Full Text PDF

Mesial temporal lobe epilepsy (MTLE) can be associated with emotion recognition impairment that can be particularly severe in patients with early onset seizures (1-3). Whereas, there is growing evidence that memory and language can improve in seizure-free patients after anterior temporal lobectomy (ATL) (4), the effects of surgery on emotional processing are still unknown. We used functional magnetic resonance imaging (fMRI) to investigate short-term reorganization of networks engaged in facial emotion recognition in MTLE patients.

View Article and Find Full Text PDF

Little is known about the neural bases of hypnotic suggestibility, a cognitive trait referring to the tendency to respond to hypnotic suggestions. In the present magnetic resonance imaging study, we performed regression analyses to assess hypnotic suggestibility-related differences in local gray matter volume, using voxel-based morphometry, and in waking resting state functional connectivity of 10 resting state networks, in 37 healthy women. Hypnotic suggestibility was positively correlated with gray matter volume in portions of the left superior and medial frontal gyri, roughly overlapping with the supplementary and pre-supplementary motor area, and negatively correlated with gray matter volume in the left superior temporal gyrus and insula.

View Article and Find Full Text PDF

Recent data show a broad correspondence between human resting-state and task-related brain networks. We performed a functional magnetic resonance imaging (fMRI) study to compare, in the same subjects, the spatial independent component analysis (ICA) maps obtained at rest and during the observation of either reaching/grasping hand actions or matching static pictures. Two parietofrontal networks were identified by ICA from action observation task data.

View Article and Find Full Text PDF

Despite growing interest in the placebo effect, the neural correlates of conditioned analgesia are still incompletely understood. We investigated herein on brain activity during the conditioning and post-conditioning phases of a placebo experimental paradigm, using event-related fMRI in 31 healthy volunteers. Brief laser heat stimuli delivered to one foot (either right or left) were preceded by different visual cues, signalling either painful stimuli alone, or painful stimuli accompanied by a (sham) analgesic procedure.

View Article and Find Full Text PDF

Recent studies have shown that functional magnetic resonance imaging (fMRI) can non-invasively assess spinal cord activity. Yet, a quantitative description of nociceptive and non-nociceptive responses in the human spinal cord, compared with random signal fluctuations in resting state data, is still lacking. Here we have investigated the intensity and spatial extent of blood oxygenation level dependent (BOLD) fMRI responses in the cervical spinal cord of healthy volunteers, elicited by stimulation of the hand dorsum (C6-C7 dermatomes).

View Article and Find Full Text PDF

The neural mechanisms subserving recognition of noxious stimuli and empathy for pain appear to involve at least in part the cortical regions associated with the processing of pain affect. An important issue concerns the specificity of brain networks associated with observing and representing painful conditions, in comparison with other unpleasant stimuli. Recently, we found both similarities and differences between the brain patterns of activity related to the observation of noxious or disgusting stimuli delivered to one hand or foot.

View Article and Find Full Text PDF

The present fMRI study was aimed at assessing the cortical areas active when individuals observe non-object-directed actions (mimed, symbolic, and meaningless), and when they imagine performing those same actions. fMRI signal increases in common between action observation and motor imagery were found in the premotor cortex and in a large region of the inferior parietal lobule. While the premotor cortex activation overlapped that previously found during the observation and imagination of object-directed actions, in the parietal lobe the signal increase was not restricted to the intraparietal sulcus region, known to be active during the observation and imagination of object-directed actions, but extended into the supramarginal and angular gyri.

View Article and Find Full Text PDF

Looking at still images of body parts in situations that are likely to cause pain has been shown to be associated with activation in some brain areas involved in pain processing. Because pain involves both sensory components and negative affect, it is of interest to explore whether the visually evoked representations of pain and of other negative emotions overlap. By means of event-related functional magnetic resonance imaging, here we compare the brain areas recruited, in female volunteers, by the observation of painful, disgusting, or neutral stimuli delivered to one hand or foot.

View Article and Find Full Text PDF