Publications by authors named "Davide Di Francesco"

The acetosolv extraction, allylation and subsequent cross-linking of wheat straw lignin to thermoset biomaterials is herein described. The extraction temperature proved to be of great importance for the quality of the resulting lignin, with moderate temperature being key for preservation of β-O-4' linkages. The allylation of the acetosolv lignin was carried out using three different synthetic strategies, resulting in selective installation of either benzylic or phenolic allyl ethers, or unselective allylation of various hydroxyl groups via etherification and carboxyallylation.

View Article and Find Full Text PDF

Thermosetting polymeric materials have advantageous properties and are therefore used in numerous applications. In this study, it was hypothesized and ultimately shown that thermosets could be derived from comparably sustainable sub-components. A two-step procedure to produce a thermoset comprising of Kraft lignin (KL) and the cross-linker adipic acid (AdA) was developed.

View Article and Find Full Text PDF

Lignin is an abundant polymeric renewable material and thus a promising candidate for incorporation in various commercial thermoplastic polymers. One challenge is to increase the dispersibility of amphiphilic lignin in lipophilic thermoplastic polymers We altered Kraft lignin using widely available and renewable fatty acids, such as oleic acid, yielding more than 8 kg of lignin ester as a light brown powder. SEC showed a molecular weight of 5.

View Article and Find Full Text PDF

By extracting lignin, pulp production can be increased without heavy investments in a new recovery boiler, the typical bottleneck of a pulp mill. The extraction is performed by using 0.20 and 0.

View Article and Find Full Text PDF

Herein, a catalytic reductive fractionation of lignocellulose is presented using a heterogeneous cobalt catalyst and formic acid or formate as a hydrogen donor. The catalytic reductive fractionation of untreated birch wood yields monophenolic compounds in up to 34 wt % yield of total lignin, which corresponds to 76 % of the theoretical maximum yield. Model compound studies revealed that the main role of the cobalt catalyst is to stabilize the reactive intermediates formed during the organosolv pulping by transfer hydrogenation and hydrogenolysis reactions.

View Article and Find Full Text PDF

This review discusses the challenges within the research area of modern biomass fractionation and valorization. The current pulping industry focuses on pulp production and the resulting cellulose fiber. Hemicellulose and lignin are handled as low value streams for process heat and the regeneration of process chemicals.

View Article and Find Full Text PDF