The concept of a novel non-contacting technique for measuring straightness and its practical realization in a mechanical device are presented in this article. The device, called InPlanT, is based on the acquisition of the luminous signal retroreflected by a spherical glass target and impinged on a photodiode after mechanical modulation. The received signal is reduced to the sought straightness profile using dedicated software.
View Article and Find Full Text PDFOver the past decade, evidence has identified a link between protein aggregation, RNA biology, and a subset of degenerative diseases. An important feature of these disorders is the cytoplasmic or nuclear aggregation of RNA-binding proteins (RBPs). Redistribution of RBPs, such as the human TAR DNA-binding 43 protein (TDP-43) from the nucleus to cytoplasmic inclusions is a pathological feature of several diseases.
View Article and Find Full Text PDFJ Enzyme Inhib Med Chem
February 2017
Histones and polyamines are important determinants of the chromatin structure. Histones form the core of nucleosome particles and their modification by acetylation of N-terminal tails is involved in chromatin structural changes and transcriptional regulation. Polyamines, including spermidine, are also targets of both cytoplasmic and nuclear acetylation, which in turn alters their affinity for DNA and nucleosomes.
View Article and Find Full Text PDFMotivation: Thanks to research spanning nearly 30 years, two major models have emerged that account for nucleosome organization in chromatin: statistical and sequence specific. The first is based on elegant, easy to compute, closed-form mathematical formulas that make no assumptions of the physical and chemical properties of the underlying DNA sequence. Moreover, they need no training on the data for their computation.
View Article and Find Full Text PDFIn order to study the role played by cellular RNA pools produced by homologous genomic loci in defining the transcriptional state of a silenced gene, we tested the effect of non-functional alleles of the white gene in the presence of a functional copy of white, silenced by heterochromatin. We found that non-functional alleles of white, unable to produce a coding transcript, could reactivate in trans the expression of a wild type copy of the same gene silenced by heterochromatin. This new epigenetic phenomenon of transcriptional trans-reactivation is heritable, relies on the presence of homologous RNA's and is affected by mutations in genes involved in post-transcriptional gene silencing.
View Article and Find Full Text PDFHeat-shock protein (Hsp)10 is the co-chaperone for Hsp60 inside mitochondria, but it also resides outside the organelle. Variations in its levels and intracellular distribution have been documented in pathological conditions, e.g.
View Article and Find Full Text PDFHeterogeneous nuclear ribonucleoproteins (hnRNPs) are a highly conserved family of RNA-binding proteins able to associate with nascent RNAs in order to support their localization, maturation and translation. Research over this last decade has remarked the importance of gene regulatory processes at post-transcriptional level, highlighting the emerging roles of hnRNPs in several essential biological events. Indeed, hnRNPs are key factors in regulating gene expression, thus, having a number of roles in many biological pathways.
View Article and Find Full Text PDFIt has been established that Hsp60 can accumulate in the cytosol in various pathological conditions, including cancer and chronic inflammatory diseases. Part or all of the cytosolic Hsp60 could be naïve, namely, bear the mitochondrial import signal (MIS), but neither the structure nor the in solution oligomeric organization of this cytosolic molecule has still been elucidated. Here we present a detailed study of the structure and self-organization of naïve cytosolic Hsp60 in solution.
View Article and Find Full Text PDFThe packaging of the eukaryotic genome into chromatin facilitates the storage of the genetic information within the nucleus, but prevents the access to the underlying DNA sequences. Structural changes in chromatin are mediated by several mechanisms. Among them, ATP-dependent remodelling complexes belonging to ISWI family provides one of the best examples that eukaryotic cells evolved to finely regulate these changes.
View Article and Find Full Text PDFFacioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant myopathy with a strong epigenetic component. It is associated with deletion of a macrosatellite repeat leading to over-expression of the nearby genes. Among them, we focused on FSHD region gene 1 (FRG1) since its over-expression in mice, Xenopus laevis and Caenorhabditis elegans, leads to muscular dystrophy-like defects, suggesting that FRG1 plays a relevant role in muscle biology.
View Article and Find Full Text PDFBackground: In a previous work we showed for the first time that human tumor cells secrete Hsp60 via exosomes, which are considered immunologically active microvesicles involved in tumor progression. This finding raised questions concerning the route followed by Hsp60 to reach the exosomes, its location in them, and whether Hsp60 can be secreted also via other mechanisms, e.g.
View Article and Find Full Text PDFRNA interference (RNAi) pathways have evolved as important modulators of gene expression that operate in the cytoplasm by degrading RNA target molecules through the activity of short (21-30 nucleotide) RNAs. RNAi components have been reported to have a role in the nucleus, as they are involved in epigenetic regulation and heterochromatin formation. However, although RNAi-mediated post-transcriptional gene silencing is well documented, the mechanisms of RNAi-mediated transcriptional gene silencing and, in particular, the role of RNAi components in chromatin dynamics, especially in animal multicellular organisms, are elusive.
View Article and Find Full Text PDFMethods Mol Biol
January 2012
Poly ADP-ribosylation (PARylation) is a posttranslational protein modification catalyzed by poly -ADP-ribose polymerases (PARPs). Poly ADP-ribose metabolism is involved in a wide range of biological processes, such as maintenance of genome stability, transcriptional regulation, energy metabolism, and programed cell death. Recently, chromatin components, including histones, have been shown to be targets of PARylation.
View Article and Find Full Text PDFThe complexity in composition and function of the eukaryotic nucleus is achieved through its organization in specialized nuclear compartments. The Drosophila chromatin remodeling ATPase ISWI plays evolutionarily conserved roles in chromatin organization. Interestingly, ISWI genetically interacts with the hsrω gene, encoding multiple non-coding RNAs (ncRNA) essential, among other functions, for the assembly and organization of the omega speckles.
View Article and Find Full Text PDFTelomeres are specialized structures at the end of eukaryotic chromosomes that are required to preserve genome integrity, chromosome stability and nuclear architecture. Telomere maintenance and function are established epigenetically in several eukaryotes. However, the exact chromatin enzymatic modifications regulating telomere homeostasis are poorly understood.
View Article and Find Full Text PDFThe evolutionarily conserved ATP-dependent nucleosome remodelling factor ISWI can space nucleosomes affecting a variety of nuclear processes. In Drosophila, loss of ISWI leads to global transcriptional defects and to dramatic alterations in higher-order chromatin structure, especially on the male X chromosome. In order to understand if chromatin condensation and gene expression defects, observed in ISWI mutants, are directly correlated with ISWI nucleosome spacing activity, we conducted a genome-wide survey of ISWI binding and nucleosome positioning in wild-type and ISWI mutant chromatin.
View Article and Find Full Text PDFDynamic regulation of histone modifications is critical during development, and aberrant activity of chromatin-modifying enzymes has been associated with diseases such as cancer. Histone demethylases have been shown to play a key role in eukaryotic gene transcription; however, little is known about how their activities are coordinated in vivo to regulate specific biological processes. In Drosophila, two enzymes, dLsd1 (Drosophila ortholog of lysine-specific demethylase 1) and Lid (little imaginal discs), demethylate histone H3 at Lys 4 (H3K4), a residue whose methylation is associated with actively transcribed genes.
View Article and Find Full Text PDFBiochim Biophys Acta
February 2011
The eukaryotic genome is a highly organized nucleoprotein structure comprising of DNA, histones, non-histone proteins, and RNAs, referred to as chromatin. The chromatin exists as a dynamic entity, shuttling between the open and closed forms at specific nuclear regions and loci based on the requirement of the cell. This dynamicity is essential for the various DNA-templated phenomena like transcription, replication, and repair and is achieved through the activity of ATP-dependent chromatin remodeling complexes and covalent modifiers of chromatin.
View Article and Find Full Text PDFISWI is an evolutionarily conserved ATP-dependent chromatin remodeling factor playing central roles in DNA replication, RNA transcription, and chromosome organization. The variety of biological functions dependent on ISWI suggests that its activity could be highly regulated. Our group has previously isolated and characterized new cellular activities that positively regulate ISWI in Drosophila melanogaster.
View Article and Find Full Text PDFBackground: Hsp60, a Group I mitochondrial chaperonin, is classically considered an intracellular chaperone with residence in the mitochondria; nonetheless, in the last few years it has been found extracellularly as well as in the cell membrane. Important questions remain pertaining to extracellular Hsp60 such as how generalized is its occurrence outside cells, what are its extracellular functions and the translocation mechanisms that transport the chaperone outside of the cell. These questions are particularly relevant for cancer biology since it is believed that extracellular chaperones, like Hsp70, may play an active role in tumor growth and dissemination.
View Article and Find Full Text PDFHistone acetylation plays essential roles in cell cycle progression, DNA repair, gene expression and silencing. Although the knowledge regarding the roles of acetylation of histone lysine residues is rapidly growing, very little is known about the biochemical pathways providing the nucleus with metabolites necessary for physiological chromatin acetylation. Here, we show that mutations in the scheggia (sea)-encoded Sea protein, the Drosophila ortholog of the human mitochondrial citrate carrier Solute carrier 25 A1 (SLC25A1), impair citrate transport from mitochondria to the cytosol.
View Article and Find Full Text PDFThe basic unit of eukaryotic chromatin is the nucleosome, consisting of about 150 bp of DNA wrapped around a protein core made of histone proteins. Nucleosomes position is modulated in vivo to regulate fundamental nuclear processes. To measure nucleosome positions on a genomic scale both theoretical and experimental approaches have been recently reported.
View Article and Find Full Text PDFATP-dependent nucleosome-remodeling enzymes and covalent modifiers of chromatin set the functional state of chromatin. However, how these enzymatic activities are coordinated in the nucleus is largely unknown. We found that the evolutionary conserved nucleosome-remodeling ATPase ISWI and the poly-ADP-ribose polymerase PARP genetically interact.
View Article and Find Full Text PDF