The Sb compounds with = Cr, Fe, Ru, and Os have been investigated under high pressures by synchrotron powder X-ray diffraction. All compounds, except CrSb, were found to retain the marcasite structure up to the highest pressures (more than 50 GPa). In contrast, we found that CrSb has a structural phase transition around 10 GPa to a metastable, MoP-type structure with Cr coordinated to seven Sb atoms.
View Article and Find Full Text PDFUsing a recently developed method for in situ high-pressure, laser heating experiments in diamond anvil cells, we obtained a novel post-perovskite phase of SrOsO. The phase transition from perovskite SrOsO was induced at 44 GPa and 1350 K in a diamond anvil cell and characterized with synchrotron powder X-ray diffraction. The newly obtained post-perovskite is quenchable and Le Bail refinements under ambient conditions yielded the unit cell parameters: = 3.
View Article and Find Full Text PDFWe present a combined real and reciprocal space structural and microstructural characterization of CeO nanoparticles (NPs) exhibiting different crystallite sizes; ~3 nm CeO NPs were produced by an inverse micellae wet synthetic path and then annealed at different temperatures. X-ray total scattering data were analyzed by combining real-space-based Pair Distribution Function analysis and the reciprocal-space-based Debye Scattering Equation method with atomistic models. Subtle atomic-scale relaxations occur at the nanocrystal surface.
View Article and Find Full Text PDFComputational methods are increasingly used to support interpreting, assigning and predicting the solid-state nuclear resonance magnetic spectra of materials. Currently, density functional theory is seen to achieve a good balance between efficiency and accuracy in solid-state chemistry. To be specific, density functional theory allows the assignment of signals in nuclear resonance magnetic spectra to specific sites and can help identify overlapped or missing signals from experimental nuclear resonance magnetic spectra.
View Article and Find Full Text PDFA quantitative study on inelastic electron scattering with a molecule is of significant importance for understanding the essential mechanisms of electron-induced gas-phase and surface chemical reactions in their excited electronic states. A key issue to be addressed is the quantitatively detailed inelastic electron collision processes with a realistic molecular target, associated with electron excitation that leads to potential ionization and dissociation reactions of the molecule. Using the real-time time-dependent density functional theory (TDDFT) modeling, we present quantitative findings on the energy transfers and internal excitations for the low energy (up to 270 eV) electron wave packet impact with the molecular target cobalt tricarbonyl nitrosyl (CTN, Co(CO)NO) that is used as a precursor in electron-enhanced atomic layer deposition (EE-ALD) growth of Co films.
View Article and Find Full Text PDFHere we report on the impact of reducing the crystalline size on the structural and magnetic properties of γ-FeO maghemite nanoparticles. A set of polycrystalline specimens with crystallite size ranging from ~2 to ~50 nm was obtained combining microwave plasma synthesis and commercial samples. Crystallite size was derived by electron microscopy and synchrotron powder diffraction, which was used also to investigate the crystallographic structure.
View Article and Find Full Text PDFCyclometalated Ir(III) compounds are the preferred choice as organic emitters in organic light-emitting diodes. In practice, the presence of the transition metal surrounded by carefully designed ligands allows fine-tuning of the emission frequency as well as good efficiency of the device. To support the development of new compounds, experimental measurements are generally compared with absorption and emission spectra obtained from ab initio calculations.
View Article and Find Full Text PDFThe need for high efficiency energy production, conversion, storage and transport is serving as a robust guide for the development of new materials. Materials with physical-chemical properties matching specific functions in devices are produced by suitably tuning the crystallographic- defect- and micro-structure of the involved phases. In this review, we discuss the case of Rare Earth doped Ceria.
View Article and Find Full Text PDFWe report the electronic, magnetic and transport properties of a prototypical antiferromagnetic (AFM) spintronic device. We chose Cr as the active layer because it is the only room-temperature AFM elemental metal. We sandwiched Cr between two non-magnetic metals (Pt or Au) with large spin-orbit coupling.
View Article and Find Full Text PDFβ-Diketones are an important class of bidentate cyclometalating compounds, used in organometallic chemistry as ancillary ligands because of their wide commercial availability and easy synthesis. They are employed to finely tune the electronic, spectroscopic and physical properties of metal complexes. Heteroleptic iridium complexes often benefit from the use of β-diketonate ligands, their properties being similar to those of the corresponding homoleptic tris-cyclometalated ones.
View Article and Find Full Text PDFWe show that efficient norm-conserving pseudopotentials for electronic structure calculations can be obtained from a polynomial Ansatz for the potential. Our pseudopotential is a polynomial of degree ten in the radial variable and fulfils the same smoothness conditions imposed by the Troullier-Martins method (TM) (1991 Phys. Rev.
View Article and Find Full Text PDFThe structural origin of absorption and fluorescence anisotropy of the single crystal of the π-conjugated heterocyclic system 5,6,10b-tri-aza-acephenan-thrylene, TAAP, is presented in this study. X-ray analysis shows that the crystal framework in the space group [Formula: see text] is formed by centrosymmetric dimers of face-to-face mutually oriented TAAP molecules joined by π-π non-covalent interactions. The conformation of the TAAP molecule is stabilized by intramolecular C-H⋯N(), N()H⋯π(CN), and C-H⋯O() hydrogen bonds.
View Article and Find Full Text PDFIridium complexes bearing cyclometalated (C^N) ligands are the current emitters of choice for efficient phosphorescent organic light emitting diodes (OLEDs). Homoleptic iridium complexes Ir(C^N) and the analogous heteroleptic ones carrying a β-diketonate ancillary ligand (C^N)Ir(O^O) often exhibit similar photophysical properties and device performances; the choice among them usually depends both on the yield/ease of the respective synthetic preparations as well as on the device fabrication methods (i.e.
View Article and Find Full Text PDFThe source function (SF) is a topological descriptor that was introduced and developed by C. Gatti and R.W.
View Article and Find Full Text PDFIn this work we achieve three milestones: (1) we present a subsystem DFT method capable of running ab-initio molecular dynamics simulations accurately and efficiently. (2) In order to rid the simulations of inter-molecular self-interaction error, we exploit the ability of semilocal frozen density embedding formulation of subsystem DFT to represent the total electron density as a sum of localized subsystem electron densities that are constrained to integrate to a preset, constant number of electrons; the success of the method relies on the fact that employed semilocal nonadditive kinetic energy functionals effectively cancel out errors in semilocal exchange-correlation potentials that are linked to static correlation effects and self-interaction. (3) We demonstrate this concept by simulating liquid water and solvated OH(•) radical.
View Article and Find Full Text PDFThree NIR-emitting neutral Ir(III) complexes [Ir(iqbt)2 (dpm)] (1), [Ir(iqbt)2 (tta)] (2), and [Ir(iqbt)2 (dtdk)] (3) based on the 1-(benzo[b]thiophen-2-yl)-isoquinolinate (iqtb) were synthesized and characterized (dpm=2,2,6,6-tetramethyl-3,5-heptanedionate; tta=2-thienoyltrifluoroacetonate; dtdk=1,3-di(thiophen-2-yl)propane-1,3-dionate). The compounds emit between λ=680 and 850 nm with high luminescence quantum yields (up to 16 %). By combining electrochemistry, photophysical measurements, and computational modelling, the relationship between the structure, energy levels, and properties were investigated.
View Article and Find Full Text PDFWe present the extension of Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) to real-time Time Dependent Density Functional Theory (rt-TDDFT). FDE is a DFT-in-DFT embedding method that allows to partition a larger Kohn-Sham system into a set of smaller, coupled Kohn-Sham systems. Additional to the computational advantage, FDE provides physical insight into the properties of embedded systems and the coupling interactions between them.
View Article and Find Full Text PDFBy partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn-Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation.
View Article and Find Full Text PDFSolid State Nucl Magn Reson
February 2013
NMR is the technique of election to probe the local properties of materials. Herein we present the results of density functional theory (DFT) ab initio calculations of the NMR parameters for fluorapatite (FAp), a calcium orthophosphate mineral belonging to the apatite family, by using the GIPAW method (Pickard and Mauri, 2001). Understanding the local effects of pressure on apatites is particularly relevant because of their important role in many solid state and biomedical applications.
View Article and Find Full Text PDFQUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License.
View Article and Find Full Text PDFWorking in the Wannier representation, we derive an expression for the orbital magnetization of a periodic insulator. The magnetization is shown to be comprised of two contributions, an obvious one associated with the internal circulation of bulklike Wannier functions in the interior, and an unexpected one arising from net currents carried by Wannier functions near the surface. Each contribution can be expressed as a bulk property in terms of Bloch functions in a gauge-invariant way.
View Article and Find Full Text PDFWhile the orbital magnetic dipole moment of any finite sample is well-defined, it becomes ill-defined in the thermodynamic limit as a result of the unboundedness of the position operator. Effects due to surface currents and to bulk magnetization are not easily disentangled. The corresponding electrical problem, where surface charges and bulk polarization appear as entangled, was solved about a decade ago by the modern theory of polarization, based on a Berry phase.
View Article and Find Full Text PDFThe orbital magnetic moment due to rotation or pseudorotation in a molecule or a solid and the corresponding rotational g factor are formulated using the Berry-phase technique and standard density functional plane wave methods. Among the simplest molecules, H+2, H2, C2H2, CH4, and CF4, with known rotational g factors, are used as test cases with excellent results. Alternative, faster localized orbital calculations including the magnetic coupling through heuristic Peierls phase factors are also tested and found to be viable, though less accurate.
View Article and Find Full Text PDF