Publications by authors named "Davide Caron"

. The compromise of the hippocampal loop is a hallmark of mesial temporal lobe epilepsy (MTLE), the most frequent epileptic syndrome in the adult population and the most often refractory to medical therapy. Hippocampal sclerosis is found in >50% of drug-refractory MTLE patients and primarily involves the CA1, consequently disrupting the hippocampal output to the entorhinal cortex (EC).

View Article and Find Full Text PDF

Mesial temporal lobe epilepsy (MTLE) is the most common partial complex epilepsy in adults and the most unresponsive to medications. Electrical deep brain stimulation (DBS) of the hippocampus has proved effective in controlling seizures in epileptic rodents and in drug-refractory MTLE patients. However, current DBS paradigms implement arbitrary fixed-frequency or patterned stimuli, disregarding the temporal profile of brain electrical activity.

View Article and Find Full Text PDF

Brain organoids are three-dimensional (3D) self-organized neural structures, which can enable disease modeling and drug screening. However, their use for standardized large-scale drug screening studies is limited by their high batch-to-batch variability, long differentiation time (10-20 weeks), and high production costs. This is particularly relevant when brain organoids are obtained from human induced pluripotent stem cells (iPSCs).

View Article and Find Full Text PDF

Brain-on-Chip (BoC) biotechnology is emerging as a promising tool for biomedical and pharmaceutical research applied to the neurosciences. At the convergence between lab-on-chip and cell biology, BoC couples in vitro three-dimensional brain-like systems to an engineered microfluidics platform designed to provide an in vivo-like extrinsic microenvironment with the aim of replicating tissue- or organ-level physiological functions. BoC therefore offers the advantage of an in vitro reproduction of brain structures that is more faithful to the native correlate than what is obtained with conventional cell culture techniques.

View Article and Find Full Text PDF

Medulloblastoma (MB) is the most common malignant brain tumor in children and among the subtypes, Group 3 MB has the worst outcome. Here, we perform an in vivo, patient-specific screen leading to the identification of Otx2 and c-MYC as strong Group 3 MB inducers. We validated our findings in human cerebellar organoids where Otx2/c-MYC give rise to MB-like organoids harboring a DNA methylation signature that clusters with human Group 3 tumors.

View Article and Find Full Text PDF

The transition of neural progenitors to differentiated postmitotic neurons is mainly considered irreversible in physiological conditions. In the present work, we show that Shh pathway activation through SmoM2 expression promotes postmitotic neurons dedifferentiation, re-entering in the cell cycle and originating medulloblastoma in vivo. Notably, human adult patients present inactivating mutations of the chromatin reader BRPF1 that are associated with SMO mutations and absent in pediatric and adolescent patients.

View Article and Find Full Text PDF